In order to obtain a fundamental understanding of the corrosion behavior oftin in atmosphere, in situ IR-RAS (infrared reflection absorption spectroscopy) measurements wereperformed on tin in humid air containing SO_2...In order to obtain a fundamental understanding of the corrosion behavior oftin in atmosphere, in situ IR-RAS (infrared reflection absorption spectroscopy) measurements wereperformed on tin in humid air containing SO_2 and NO_2 at room temperature. Time-resolved in situ IRspectra in air of 90 percent RH (relative humidity) containing 1 X 10^(-5)-2.2 X 10^(-5) SO_2suggested that the tin oxide layers worked as a protective film and no significant corrosionoccurred. The corrosion products in air of 80 percent-90 percent RH containing 1 X 10^(-5)-2.2 X10^(-5) NO_2 were SnO_2, SnO, nitrate and hyponitrite. The synergistic effect of SO_2 and NO_2 oncorrosion of tin was not observed in air of 90 percent RH containing 0.84 X 10^(-6) SO_2 and 1.8 X10^(-6) NO_2.展开更多
文摘In order to obtain a fundamental understanding of the corrosion behavior oftin in atmosphere, in situ IR-RAS (infrared reflection absorption spectroscopy) measurements wereperformed on tin in humid air containing SO_2 and NO_2 at room temperature. Time-resolved in situ IRspectra in air of 90 percent RH (relative humidity) containing 1 X 10^(-5)-2.2 X 10^(-5) SO_2suggested that the tin oxide layers worked as a protective film and no significant corrosionoccurred. The corrosion products in air of 80 percent-90 percent RH containing 1 X 10^(-5)-2.2 X10^(-5) NO_2 were SnO_2, SnO, nitrate and hyponitrite. The synergistic effect of SO_2 and NO_2 oncorrosion of tin was not observed in air of 90 percent RH containing 0.84 X 10^(-6) SO_2 and 1.8 X10^(-6) NO_2.