Based on the surface-gate and buried-gate structures,a novel buried-gate structure called the planar type buried-gate (PTBG) structure for static induction devices (SIDs) is proposed.An approach to realize a buried-ga...Based on the surface-gate and buried-gate structures,a novel buried-gate structure called the planar type buried-gate (PTBG) structure for static induction devices (SIDs) is proposed.An approach to realize a buried-gate type static induction transistor by conventional planar process technology is presented.Using this structure,it is successfully avoided the second epitaxy with a high degree of difficulty and the complicated mesa process in conventional buried gate.The experimental results demonstrate that this structure is desirable for application in power SIDs.Its advantages are high breakdown voltage and blocking gain.展开更多
A high performance VHF power VDMOSFET,ap plying to the mobile communications,is developed,which can deliver an output power of 12W with the drain efficiency of 70% as well as the gain of 12dB at a low supply voltag...A high performance VHF power VDMOSFET,ap plying to the mobile communications,is developed,which can deliver an output power of 12W with the drain efficiency of 70% as well as the gain of 12dB at a low supply voltage of 12V and 175MHz.It is fabricated by using the terraced gat e structure and refractory molybdenum (Mo) gate technology.展开更多
The influence of gate-head and gate-source-spacing on the performance of AlGaN/GaN HEMTs was studied. Suggestions are then made to improve the performance of high frequency power AlGaN/GaN HEMTs by optimizing the gate...The influence of gate-head and gate-source-spacing on the performance of AlGaN/GaN HEMTs was studied. Suggestions are then made to improve the performance of high frequency power AlGaN/GaN HEMTs by optimizing the gate-structure.Reducing the field-plate length can effectively enhance gain,current gain cutoff frequency and maximum frequency of oscillation.By reducing the field-plate length,devices with 0.35μm gate length have exhibited a current gain cutoff frequency of 30 GHz and a maximum frequency of oscillation of 80 GHz.The maximum frequency of oscillation can be further optimized either by increasing the gate-metal thickness,or by using aτ-shape gate (the gate where the gate-head tends to the source side).Reducing the gate-source spacing can enhance the maximum drain-current and breakdown voltage,which is beneficial in enhancing the maximum output power of AlGaN/GaN HEMTs.展开更多
文摘Based on the surface-gate and buried-gate structures,a novel buried-gate structure called the planar type buried-gate (PTBG) structure for static induction devices (SIDs) is proposed.An approach to realize a buried-gate type static induction transistor by conventional planar process technology is presented.Using this structure,it is successfully avoided the second epitaxy with a high degree of difficulty and the complicated mesa process in conventional buried gate.The experimental results demonstrate that this structure is desirable for application in power SIDs.Its advantages are high breakdown voltage and blocking gain.
文摘A high performance VHF power VDMOSFET,ap plying to the mobile communications,is developed,which can deliver an output power of 12W with the drain efficiency of 70% as well as the gain of 12dB at a low supply voltage of 12V and 175MHz.It is fabricated by using the terraced gat e structure and refractory molybdenum (Mo) gate technology.
基金supported by the National Natural Science Foundation of China(No.60890191).
文摘The influence of gate-head and gate-source-spacing on the performance of AlGaN/GaN HEMTs was studied. Suggestions are then made to improve the performance of high frequency power AlGaN/GaN HEMTs by optimizing the gate-structure.Reducing the field-plate length can effectively enhance gain,current gain cutoff frequency and maximum frequency of oscillation.By reducing the field-plate length,devices with 0.35μm gate length have exhibited a current gain cutoff frequency of 30 GHz and a maximum frequency of oscillation of 80 GHz.The maximum frequency of oscillation can be further optimized either by increasing the gate-metal thickness,or by using aτ-shape gate (the gate where the gate-head tends to the source side).Reducing the gate-source spacing can enhance the maximum drain-current and breakdown voltage,which is beneficial in enhancing the maximum output power of AlGaN/GaN HEMTs.