期刊文献+
共找到503篇文章
< 1 2 26 >
每页显示 20 50 100
EFFECTIVE IMAGE SEGMENTATION FRAMEWORK FOR GAUSSIAN MIXTURE MODEL INCORPORATING LOCAL INFORMATION 被引量:3
1
作者 蔡维玲 丁军娣 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第4期266-274,共9页
A new two-step framework is proposed for image segmentation. In the first step, the gray-value distribution of the given image is reshaped to have larger inter-class variance and less intra-class variance. In the sec-... A new two-step framework is proposed for image segmentation. In the first step, the gray-value distribution of the given image is reshaped to have larger inter-class variance and less intra-class variance. In the sec- ond step, the discriminant-based methods or clustering-based methods are performed on the reformed distribution. It is focused on the typical clustering methods-Gaussian mixture model (GMM) and its variant to demonstrate the feasibility of the framework. Due to the independence of the first step in its second step, it can be integrated into the pixel-based and the histogram-based methods to improve their segmentation quality. The experiments on artificial and real images show that the framework can achieve effective and robust segmentation results. 展开更多
关键词 pattern recognition image processing image segmentation gaussian mixture model (gmm expectation maximization (EM)
下载PDF
A multi-target tracking algorithm based on Gaussian mixture model 被引量:3
2
作者 SUN Lili CAO Yunhe +1 位作者 WU Wenhua LIU Yutao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第3期482-487,共6页
Since the joint probabilistic data association(JPDA)algorithm results in calculation explosion with the increasing number of targets,a multi-target tracking algorithm based on Gaussian mixture model(GMM)clustering is ... Since the joint probabilistic data association(JPDA)algorithm results in calculation explosion with the increasing number of targets,a multi-target tracking algorithm based on Gaussian mixture model(GMM)clustering is proposed.The algorithm is used to cluster the measurements,and the association matrix between measurements and tracks is constructed by the posterior probability.Compared with the traditional data association algorithm,this algorithm has better tracking performance and less computational complexity.Simulation results demonstrate the effectiveness of the proposed algorithm. 展开更多
关键词 multiple-target tracking gaussian mixture model(gmm) data association expectation maximization(EM)algorithm
下载PDF
ON USING NON-LINEAR CANONICAL CORRELATION ANALYSIS FOR VOICE CONVERSION BASED ON GAUSSIAN MIXTURE MODEL
3
作者 Jian Zhihua Yang Zhen 《Journal of Electronics(China)》 2010年第1期1-7,共7页
Voice conversion algorithm aims to provide high level of similarity to the target voice with an acceptable level of quality.The main object of this paper was to build a nonlinear relationship between the parameters fo... Voice conversion algorithm aims to provide high level of similarity to the target voice with an acceptable level of quality.The main object of this paper was to build a nonlinear relationship between the parameters for the acoustical features of source and target speaker using Non-Linear Canonical Correlation Analysis(NLCCA) based on jointed Gaussian mixture model.Speaker indi-viduality transformation was achieved mainly by altering vocal tract characteristics represented by Line Spectral Frequencies(LSF).To obtain the transformed speech which sounded more like the target voices,prosody modification is involved through residual prediction.Both objective and subjective evaluations were conducted.The experimental results demonstrated that our proposed algorithm was effective and outperformed the conventional conversion method utilized by the Minimum Mean Square Error(MMSE) estimation. 展开更多
关键词 Speech processing Voice conversion Non-Linear Canonical Correlation Analysis(NLCCA) gaussian mixture model(gmm)
下载PDF
A GAUSSIAN MIXTURE MODEL-BASED REGULARIZATION METHOD IN ADAPTIVE IMAGE RESTORATION
4
作者 Liu Peng Zhang Yan Mao Zhigang 《Journal of Electronics(China)》 2007年第1期83-89,共7页
A GMM (Gaussian Mixture Model) based adaptive image restoration is proposed in this paper. The feature vectors of pixels are selected and extracted. Pixels are clustered into smooth,edge or detail texture region accor... A GMM (Gaussian Mixture Model) based adaptive image restoration is proposed in this paper. The feature vectors of pixels are selected and extracted. Pixels are clustered into smooth,edge or detail texture region according to variance-sum criteria function of the feature vectors. Then pa-rameters of GMM are calculated by using the statistical information of these feature vectors. GMM predicts the regularization parameter for each pixel adaptively. Hopfield Neural Network (Hopfield-NN) is used to optimize the objective function of image restoration,and network weight value matrix is updated by the output of GMM. Since GMM is used,the regularization parameters share properties of different kind of regions. In addition,the regularization parameters are different from pixel to pixel. GMM-based regularization method is consistent with human visual system,and it has strong gener-alization capability. Comparing with non-adaptive and some adaptive image restoration algorithms,experimental results show that the proposed algorithm obtains more preferable restored images. 展开更多
关键词 Image processing gaussian mixture model (gmm Hopfield Neural Network (Hopfield-NN) REGULARIZATION Adaptive image restoration
下载PDF
Online split-and-merge expec tation-maximization training of Gaussian mixture model and its optimization
5
作者 Ran Xin Zhang Yongxin 《High Technology Letters》 EI CAS 2012年第3期302-307,共6页
This paper presents a new online incremental training algorithm of Gaussian mixture model (GMM), which aims to perform the expectation-maximization(EM) training incrementally to update GMM model parameters online ... This paper presents a new online incremental training algorithm of Gaussian mixture model (GMM), which aims to perform the expectation-maximization(EM) training incrementally to update GMM model parameters online sample by sample, instead of waiting for a block of data with the sufficient size to start training as in the traditional EM procedure. The proposed method is extended from the split-and-merge EM procedure, so inherently it is also capable escaping from local maxima and reducing the chances of singularities. In the application domain, the algorithm is optimized in the context of speech processing applications. Experiments on the synthetic data show the advantage and efficiency of the new method and the results in a speech processing task also confirm the improvement of system performance. 展开更多
关键词 gaussian mixture model (gmm online training split-and-merge expectation-maximization(SMEM) speech processing
下载PDF
Integration of Expectation Maximization using Gaussian Mixture Models and Naïve Bayes for Intrusion Detection
6
作者 Loka Raj Ghimire Roshan Chitrakar 《Journal of Computer Science Research》 2021年第2期1-10,共10页
Intrusion detection is the investigation process of information about the system activities or its data to detect any malicious behavior or unauthorized activity.Most of the IDS implement K-means clustering technique ... Intrusion detection is the investigation process of information about the system activities or its data to detect any malicious behavior or unauthorized activity.Most of the IDS implement K-means clustering technique due to its linear complexity and fast computing ability.Nonetheless,it is Naïve use of the mean data value for the cluster core that presents a major drawback.The chances of two circular clusters having different radius and centering at the same mean will occur.This condition cannot be addressed by the K-means algorithm because the mean value of the various clusters is very similar together.However,if the clusters are not spherical,it fails.To overcome this issue,a new integrated hybrid model by integrating expectation maximizing(EM)clustering using a Gaussian mixture model(GMM)and naïve Bays classifier have been proposed.In this model,GMM give more flexibility than K-Means in terms of cluster covariance.Also,they use probabilities function and soft clustering,that’s why they can have multiple cluster for a single data.In GMM,we can define the cluster form in GMM by two parameters:the mean and the standard deviation.This means that by using these two parameters,the cluster can take any kind of elliptical shape.EM-GMM will be used to cluster data based on data activity into the corresponding category. 展开更多
关键词 Anomaly detection Clustering EM classification Expectation maximization(EM) gaussian mixture model(gmm) gmm classification Intrusion detection Naïve Bayes classification
下载PDF
A Robust Indoor Localization Algorithm Based on Polynomial Fitting and Gaussian Mixed Model 被引量:2
7
作者 Long Cheng Peng Zhao +1 位作者 Dacheng Wei Yan Wang 《China Communications》 SCIE CSCD 2023年第2期179-197,共19页
Wireless sensor network(WSN)positioning has a good effect on indoor positioning,so it has received extensive attention in the field of positioning.Non-line-of sight(NLOS)is a primary challenge in indoor complex enviro... Wireless sensor network(WSN)positioning has a good effect on indoor positioning,so it has received extensive attention in the field of positioning.Non-line-of sight(NLOS)is a primary challenge in indoor complex environment.In this paper,a robust localization algorithm based on Gaussian mixture model and fitting polynomial is proposed to solve the problem of NLOS error.Firstly,fitting polynomials are used to predict the measured values.The residuals of predicted and measured values are clustered by Gaussian mixture model(GMM).The LOS probability and NLOS probability are calculated according to the clustering centers.The measured values are filtered by Kalman filter(KF),variable parameter unscented Kalman filter(VPUKF)and variable parameter particle filter(VPPF)in turn.The distance value processed by KF and VPUKF and the distance value processed by KF,VPUKF and VPPF are combined according to probability.Finally,the maximum likelihood method is used to calculate the position coordinate estimation.Through simulation comparison,the proposed algorithm has better positioning accuracy than several comparison algorithms in this paper.And it shows strong robustness in strong NLOS environment. 展开更多
关键词 wireless sensor network indoor localization NLOS environment gaussian mixture model(gmm) fitting polynomial
下载PDF
An Aircraft Trajectory Anomaly Detection Method Based on Deep Mixture Density Network 被引量:1
8
作者 CHEN Lijing ZENG Weili YANG Zhao 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第5期840-851,共12页
The timely and accurately detection of abnormal aircraft trajectory is critical to improving flight safety.However,the existing anomaly detection methods based on machine learning cannot well characterize the features... The timely and accurately detection of abnormal aircraft trajectory is critical to improving flight safety.However,the existing anomaly detection methods based on machine learning cannot well characterize the features of aircraft trajectories.Low anomaly detection accuracy still exists due to the high-dimensionality,heterogeneity and temporality of flight trajectory data.To this end,this paper proposes an abnormal trajectory detection method based on the deep mixture density network(DMDN)to detect flights with unusual data patterns and evaluate flight trajectory safety.The technique consists of two components:Utilization of the deep long short-term memory(LSTM)network to encode features of flight trajectories effectively,and parameterization of the statistical properties of flight trajectory using the Gaussian mixture model(GMM).Experiment results on Guangzhou Baiyun International Airport terminal airspace show that the proposed method can effectively capture the statistical patterns of aircraft trajectories.The model can detect abnormal flights with elevated risks and its performance is superior to two mainstream methods.The proposed model can be used as an assistant decision-making tool for air traffic controllers. 展开更多
关键词 aircraft trajectory anomaly detection mixture density network long short-term memory(LSTM) gaussian mixture model(gmm)
下载PDF
Semantic image annotation based on GMM and random walk model 被引量:1
9
作者 田东平 《High Technology Letters》 EI CAS 2017年第2期221-228,共8页
Automatic image annotation has been an active topic of research in computer vision and pattern recognition for decades.A two stage automatic image annotation method based on Gaussian mixture model(GMM) and random walk... Automatic image annotation has been an active topic of research in computer vision and pattern recognition for decades.A two stage automatic image annotation method based on Gaussian mixture model(GMM) and random walk model(abbreviated as GMM-RW) is presented.To start with,GMM fitted by the rival penalized expectation maximization(RPEM) algorithm is employed to estimate the posterior probabilities of each annotation keyword.Subsequently,a random walk process over the constructed label similarity graph is implemented to further mine the potential correlations of the candidate annotations so as to capture the refining results,which plays a crucial role in semantic based image retrieval.The contributions exhibited in this work are multifold.First,GMM is exploited to capture the initial semantic annotations,especially the RPEM algorithm is utilized to train the model that can determine the number of components in GMM automatically.Second,a label similarity graph is constructed by a weighted linear combination of label similarity and visual similarity of images associated with the corresponding labels,which is able to avoid the phenomena of polysemy and synonym efficiently during the image annotation process.Third,the random walk is implemented over the constructed label graph to further refine the candidate set of annotations generated by GMM.Conducted experiments on the standard Corel5 k demonstrate that GMM-RW is significantly more effective than several state-of-the-arts regarding their effectiveness and efficiency in the task of automatic image annotation. 展开更多
关键词 semantic image annotation gaussian mixture model gmm) random walk rival penalized expectation maximization (RPEM) image retrieval
下载PDF
MODELING INTRAPERSONAL DEFORMATION SUBSPACE USING GMM FOR PALMPRINT IDENTIFICATION
10
作者 Li Qiang Qiu Zhengding Sun Dongmei 《Journal of Electronics(China)》 2006年第4期543-548,共6页
In this paper, an efficient model of palmprint identification is presented based on subspace density estimation using Gaussian Mixture Model (GMM). While a few training samples are available for each person, we use in... In this paper, an efficient model of palmprint identification is presented based on subspace density estimation using Gaussian Mixture Model (GMM). While a few training samples are available for each person, we use intrapersonal palmprint deformations to train the global GMM instead of modeling GMMs for every class. To reduce the dimension of such variations while preserving density function of sample space, Principle Component Analysis (PCA) is used to find the principle differences and form the Intrapersonal Deformation Subspace (IDS). After training GMM using Expectation Maximization (EM) algorithm in IDS, a maximum likelihood strategy is carried out to identify a person. Experimental results demonstrate the advantage of our method compared with traditional PCA method and single Gaussian strategy. 展开更多
关键词 Palmprint identification Density estimation gaussian mixture model (gmm Principle Component Analysis (PCA) Intrapersonal Deformation Subspace (IDS)
下载PDF
基于GMM和GA-LSTM的稀土熔盐电解过程原料含量状态识别模型
11
作者 张震 朱尚琳 +3 位作者 伍昕宇 刘飞飞 何鑫凤 王家超 《中国有色金属学报》 EI CAS CSCD 北大核心 2024年第5期1727-1742,共16页
在高温高风险的稀土熔盐电解工艺中,为了实现稀土熔盐电解过程原料含量状态的智能识别,提出了一种基于混合高斯背景建模(GMM)和遗传算法优化的长短期记忆神经网络(GA-LSTM)的分类模型。模型通过GMM算法、R通道自适应滤波和中值滤波准确... 在高温高风险的稀土熔盐电解工艺中,为了实现稀土熔盐电解过程原料含量状态的智能识别,提出了一种基于混合高斯背景建模(GMM)和遗传算法优化的长短期记忆神经网络(GA-LSTM)的分类模型。模型通过GMM算法、R通道自适应滤波和中值滤波准确提取图像的火焰前景和特征,以量化熔盐电解反应的剧烈程度,进而判断稀土熔盐电解处于原料含量过多或含量正常状态;然后利用GA-LSTM神经网络建立熔盐表面火焰特征和稀土熔盐电解过程原料含量状态的非线性映射关系。结果表明:模型的识别精度高达99.79%,具有较好的泛化性,为实现稀土熔盐电解工艺自动化提供了一定的参考价值。 展开更多
关键词 稀土熔盐 火焰 特征 混合高斯模型 长短期记忆神经网络 遗传算法
下载PDF
基于PCA和GMM的宽带网络流量异常检测方法
12
作者 周永博 《通信电源技术》 2024年第15期192-194,共3页
随着网络规模和复杂度的不断提升,宽带网络流量异常检测成为保障网络稳定运行的关键。文章研究一种基于主成分分析(Principal Component Analysis,PCA)和高斯混合模型(Gaussian Mixture Model,GMM)的宽带网络流量异常检测方法。首先,利... 随着网络规模和复杂度的不断提升,宽带网络流量异常检测成为保障网络稳定运行的关键。文章研究一种基于主成分分析(Principal Component Analysis,PCA)和高斯混合模型(Gaussian Mixture Model,GMM)的宽带网络流量异常检测方法。首先,利用PCA技术对网络流量数据进行特征提取与降维处理,以降低数据的维度和复杂性;其次,采用GMM对降维后的数据进行分类;最后,使用KDD 99数据集对所提方法进行测试。实验表明,该方法能够有效检测宽带网络中的异常流量,具有较高的适应性和稳定性。 展开更多
关键词 主成分分析(PCA) 高斯混合模型(gmm) 网络流量 异常检测
下载PDF
基于TESPAR与GMM的滚动轴承性能退化评估 被引量:19
13
作者 张龙 黄文艺 +2 位作者 熊国良 周建民 周继慧 《仪器仪表学报》 EI CAS CSCD 北大核心 2014年第8期1772-1779,共8页
状态维修根据设备当前运行状态制定维修计划,可避免维修不足与维修过剩等问题。性能退化程度量化评估是实现滚动轴承状态维修的基础。提取滚动轴承早期无故障振动信号的TESPAR参数中的S矩阵作为原始特征,利用主分量分析对其进行降维处... 状态维修根据设备当前运行状态制定维修计划,可避免维修不足与维修过剩等问题。性能退化程度量化评估是实现滚动轴承状态维修的基础。提取滚动轴承早期无故障振动信号的TESPAR参数中的S矩阵作为原始特征,利用主分量分析对其进行降维处理后构建特征矢量,并建立无故障轴承高斯混合模型GMM。将轴承后期振动信号的S矩阵经降维处理后输入该GMM模型,得到被测样本与无故障样本之间的量化相似程度,以此建立时间编码对数似然值TELLP作为滚动轴承性能退化定量指标。轴承疲劳试验表明该方法能及时发现轴承早期故障,并且能很好地跟踪故障发展趋势。 展开更多
关键词 状态维修 滚动轴承 高斯混合模型 性能退化评估
下载PDF
改进的基于GMM的运动目标检测方法 被引量:8
14
作者 李刚 何小海 +1 位作者 张生军 高明亮 《计算机应用研究》 CSCD 北大核心 2011年第12期4738-4741,4756,共5页
针对传统混合高斯背景建模(GMM)在一些复杂场景下未能有效地描述背景,提出了一种改进算法。该算法引入更新和消退控制因子改进参数更新模型,并定量约束运动目标停留时间,采用从时间域上过滤得到的快速变化的背景进行背景减除操作,最后... 针对传统混合高斯背景建模(GMM)在一些复杂场景下未能有效地描述背景,提出了一种改进算法。该算法引入更新和消退控制因子改进参数更新模型,并定量约束运动目标停留时间,采用从时间域上过滤得到的快速变化的背景进行背景减除操作,最后在空间域上对检测结果进行数学形态学的处理。实验结果表明,该算法能够提高背景建立和形成速度,增强对背景扰动和光照变化的抗干扰能力,对固定摄像机场景下运动目标的检测具有良好的鲁棒性。 展开更多
关键词 混合高斯模型 背景建模 目标检测 背景减除
下载PDF
基于分裂EM算法的GMM参数估计 被引量:13
15
作者 钟金琴 辜丽川 +1 位作者 檀结庆 李莹莹 《计算机工程与应用》 CSCD 2012年第34期28-32,59,共6页
期望最大化(Expectation Maximization,EM)算法是一种求参数极大似然估计的迭代算法,常用来估计混合密度分布模型的参数。EM算法的主要问题是参数初始化依赖于先验知识且在迭代过程中容易收敛到局部极大值。提出一种新的基于分裂EM算法... 期望最大化(Expectation Maximization,EM)算法是一种求参数极大似然估计的迭代算法,常用来估计混合密度分布模型的参数。EM算法的主要问题是参数初始化依赖于先验知识且在迭代过程中容易收敛到局部极大值。提出一种新的基于分裂EM算法的GMM参数估计算法,该方法从一个确定的单高斯分布开始,在EM优化过程中逐渐分裂并估计混合分布的参数,解决了参数迭代收敛到局部极值问题。大量的实验表明,与现有的其他参数估计算法相比,算法具有较好的运算效率和估算准确性。 展开更多
关键词 高斯混合模型 期望最大化 参数估计 模式分类
下载PDF
基于GMM的间歇过程故障检测 被引量:17
16
作者 王静 胡益 侍洪波 《自动化学报》 EI CSCD 北大核心 2015年第5期899-905,共7页
对间歇过程的多操作阶段进行划分时,往往会被离群点和噪声干扰,影响建模的精确性,针对此问题提出一种新的方法:主元分析–多方向高斯混合模型(Principal component analysis-multiple Gaussian mixture model,PCA-MGMM)建模方法.首先用... 对间歇过程的多操作阶段进行划分时,往往会被离群点和噪声干扰,影响建模的精确性,针对此问题提出一种新的方法:主元分析–多方向高斯混合模型(Principal component analysis-multiple Gaussian mixture model,PCA-MGMM)建模方法.首先用最短长度法对数据进行等长处理,融合不同展开方法相结合的处理方式消除数据预估问题;利用主元分析方法将数据转换到对故障较为敏感的低维子空间中,得到主元的同时消除了离群点和噪声的干扰;通过改进的高斯混合模型(Gaussian mixture model,GMM)算法对各阶段主元进行聚类,减少了运算量的同时自动得到最佳高斯成分和对应的统计分布参数;最后将局部指标融合为全局概率监控指标,实现了连续的在线监控.通过一个实际的半导体制造过程的仿真研究验证了所提方法的有效性. 展开更多
关键词 间歇过程 多阶段操作 故障检测 高斯混合模型 全局概率指标
下载PDF
滚动轴承故障程度评估的AR-GMM方法 被引量:6
17
作者 龙铭 文章 +2 位作者 黄文艺 周建民 周继慧 《机械科学与技术》 CSCD 北大核心 2016年第8期1183-1188,共6页
提出了一种基于AR-GMM的滚动轴承故障程度评估方法,该方法利用自回归模型(AR)提取无故障轴承早期振动信号特征,并建立无故障轴承高斯混合模型(GMM)作为故障程度评估基准。轴承后期振动信号在提取AR特征后导入该基准GMM模型,得到测试样... 提出了一种基于AR-GMM的滚动轴承故障程度评估方法,该方法利用自回归模型(AR)提取无故障轴承早期振动信号特征,并建立无故障轴承高斯混合模型(GMM)作为故障程度评估基准。轴承后期振动信号在提取AR特征后导入该基准GMM模型,得到测试样本与无故障样本之间的量化相似程度。进而以此相似程度值为基础建立自回归对数似然概率值(ARLLP)作为滚动轴承故障程度评估指标。轴承疲劳试验分析表明该指标能够及时有效发现轴承早期故障,并能很好预测跟踪轴承恶化趋势,为视情维修奠定基础。 展开更多
关键词 故障程度评估 视情维修 高斯混合模型(gmm)
下载PDF
基于IGA与GMM的图像多阈值分割方法 被引量:9
18
作者 高业文 熊鹰 +1 位作者 潘晶晶 李柏林 《计算机应用研究》 CSCD 北大核心 2012年第3期1130-1134,共5页
为了实现图像的有效分割,提出了一种自适应多阈值图像分割方法,能够自动获得最佳分割阈值数目和阈值。该方法对灰度直方图进行合适尺度的连续小波变换,将小波变换曲线中幅值为负的波谷点构成阈值候选集;再应用免疫遗传算法从阈值候选集... 为了实现图像的有效分割,提出了一种自适应多阈值图像分割方法,能够自动获得最佳分割阈值数目和阈值。该方法对灰度直方图进行合适尺度的连续小波变换,将小波变换曲线中幅值为负的波谷点构成阈值候选集;再应用免疫遗传算法从阈值候选集中选取准阈值,准阈值的个数对应为最佳分割类数;根据准阈值构建灰度直方图的高斯混合模型,由最小误差准则求得分割阈值。仿真实验表明,该方法能够实现图像的自动多阈值分割,能够得到很好的分割结果且分割效率高,在多目标图像分割中能够得到很好的应用。 展开更多
关键词 图像分割 连续小波变换 免疫遗传算法 高斯混合模型
下载PDF
基于形态学重建和GMM的球团颗粒图像分割 被引量:27
19
作者 刘小燕 吴鑫 +1 位作者 孙炜 毛传刚 《仪器仪表学报》 EI CAS CSCD 北大核心 2019年第3期230-238,共9页
机器视觉技术的发展为颗粒粒径的自动测量提供了一种有效方法,但是,重叠颗粒的图像分割问题仍有待进一步解决。针对这一问题,提出一种基于形态学重建和高斯混合模型的球团颗粒图像分割算法。首先利用似圆度将单独颗粒和重叠颗粒进行区分... 机器视觉技术的发展为颗粒粒径的自动测量提供了一种有效方法,但是,重叠颗粒的图像分割问题仍有待进一步解决。针对这一问题,提出一种基于形态学重建和高斯混合模型的球团颗粒图像分割算法。首先利用似圆度将单独颗粒和重叠颗粒进行区分;根据重叠颗粒图像距离变换特征建立了高斯混合模型;为实现无监督的聚类,采用形态学重建结合聚类有效性指标的方法获得最佳聚类数目,并利用期望极大(EM)算法进行求解;最后采用圆拟合的方法对缺失的球团颗粒轮廓进行重构,实现了对重叠球团颗粒的分割。实验结果表明,该算法能够有效地对重叠颗粒进行分割,分割正确率评价指标AC为93.6%,明显优于现有的对比算法,为基于机器视觉的球团颗粒粒径分布测量奠定了基础。 展开更多
关键词 机器视觉 球团 颗粒粒径分布 高斯混合模型 形态学重建
下载PDF
基于EM和GMM相结合的自适应灰度图像分割算法 被引量:9
20
作者 罗胜 郑蓓蓉 叶忻泉 《光子学报》 EI CAS CSCD 北大核心 2009年第6期1581-1585,共5页
提出一种阈值自适应、EM方法估计GMM参量的图像分割算法,能够根据图像的内容结合区域和边界两方面的信息自适应地选择阈值,精确地进行图像边界分割.算法首先提取图像的边界,然后根据边界的直方图计算图像的可分割性,由可分割性确定EM方... 提出一种阈值自适应、EM方法估计GMM参量的图像分割算法,能够根据图像的内容结合区域和边界两方面的信息自适应地选择阈值,精确地进行图像边界分割.算法首先提取图像的边界,然后根据边界的直方图计算图像的可分割性,由可分割性确定EM方法的阈值进行GMM分割,最后合并图像的近似区域.实验数据表明,相比其它图像分割算法,以及固定阈值的传统EM算法,本算法的分割结果更为准确. 展开更多
关键词 图像分割 混合高斯模型 期望最大算法 自适应阈值
下载PDF
上一页 1 2 26 下一页 到第
使用帮助 返回顶部