随着“双碳”目标的推进,清洁能源所占比重大幅度增加,分布式光伏发电在我国农村地区快速发展,但其随机性、间歇性的特点给新能源消纳和电网稳定带来很大的挑战。光伏发电预测可以在一定程度上改善新能源消纳问题,减少光伏发电的不稳定...随着“双碳”目标的推进,清洁能源所占比重大幅度增加,分布式光伏发电在我国农村地区快速发展,但其随机性、间歇性的特点给新能源消纳和电网稳定带来很大的挑战。光伏发电预测可以在一定程度上改善新能源消纳问题,减少光伏发电的不稳定性对电网的冲击。因此,为提高光伏发电功率预测精度,提出一种基于改进向量加权平均算法优化CNN-QRGRU网络的光伏发电概率预测方法。首先采用ReliefF算法对特征变量进行选择,在此基础上利用高斯混合模型(Gaussian mixture model,GMM)聚类方法将天气分为晴天、晴转多云和阴雨天3种类型,将处理好的数据输入到CNN-GRU模型中,并利用向量加权平均(weighted mean of vectors algorithm,INFO)优化算法对模型超参数进行调参,将分位数回归模型(quantile regression,QR)与INFO-CNN-GRU模型相结合得到光伏功率条件分布,结合核密度估计法从条件分布中获得概率密度函数,完成概率预测。以实际光伏电站数据作为基础,将提出的INFO优化算法与其他几种传统的优化算法进行对比,结果表明INFO的优化效果更好,在此基础上进行概率预测,得到的概率预测结果相较于点预测能提供更多有效信息,更具有应用价值。展开更多
This paper is concerned about studying modeling-based methods in cluster analysis to classify data elements into clusters and thus dealing with time series in view of this classification to choose the appropriate mixe...This paper is concerned about studying modeling-based methods in cluster analysis to classify data elements into clusters and thus dealing with time series in view of this classification to choose the appropriate mixed model. The mixture-model cluster analysis technique under different covariance structures of the component densities is presented. This model is used to capture the compactness, orientation, shape, and the volume of component clusters in one expert system to handle Gaussian high dimensional heterogeneous data set. To achieve flexibility in currently practiced cluster analysis techniques. The Expectation-Maximization (EM) algorithm is considered to estimate the parameter of the covariance matrix. To judge the goodness of the models, some criteria are used. These criteria are for the covariance matrix produced by the simulation. These models have not been tackled in previous studies. The results showed the superiority criterion ICOMP PEU to other criteria.<span> </span><span>This is in addition to the success of the model based on Gaussian clusters in the prediction by using covariance matrices used in this study. The study also found the possibility of determining the optimal number of clusters by choosing the number of clusters corresponding to lower values </span><span><span><span>for the different criteria used in the study</span></span></span><span><span><span>.展开更多
文摘随着“双碳”目标的推进,清洁能源所占比重大幅度增加,分布式光伏发电在我国农村地区快速发展,但其随机性、间歇性的特点给新能源消纳和电网稳定带来很大的挑战。光伏发电预测可以在一定程度上改善新能源消纳问题,减少光伏发电的不稳定性对电网的冲击。因此,为提高光伏发电功率预测精度,提出一种基于改进向量加权平均算法优化CNN-QRGRU网络的光伏发电概率预测方法。首先采用ReliefF算法对特征变量进行选择,在此基础上利用高斯混合模型(Gaussian mixture model,GMM)聚类方法将天气分为晴天、晴转多云和阴雨天3种类型,将处理好的数据输入到CNN-GRU模型中,并利用向量加权平均(weighted mean of vectors algorithm,INFO)优化算法对模型超参数进行调参,将分位数回归模型(quantile regression,QR)与INFO-CNN-GRU模型相结合得到光伏功率条件分布,结合核密度估计法从条件分布中获得概率密度函数,完成概率预测。以实际光伏电站数据作为基础,将提出的INFO优化算法与其他几种传统的优化算法进行对比,结果表明INFO的优化效果更好,在此基础上进行概率预测,得到的概率预测结果相较于点预测能提供更多有效信息,更具有应用价值。
文摘This paper is concerned about studying modeling-based methods in cluster analysis to classify data elements into clusters and thus dealing with time series in view of this classification to choose the appropriate mixed model. The mixture-model cluster analysis technique under different covariance structures of the component densities is presented. This model is used to capture the compactness, orientation, shape, and the volume of component clusters in one expert system to handle Gaussian high dimensional heterogeneous data set. To achieve flexibility in currently practiced cluster analysis techniques. The Expectation-Maximization (EM) algorithm is considered to estimate the parameter of the covariance matrix. To judge the goodness of the models, some criteria are used. These criteria are for the covariance matrix produced by the simulation. These models have not been tackled in previous studies. The results showed the superiority criterion ICOMP PEU to other criteria.<span> </span><span>This is in addition to the success of the model based on Gaussian clusters in the prediction by using covariance matrices used in this study. The study also found the possibility of determining the optimal number of clusters by choosing the number of clusters corresponding to lower values </span><span><span><span>for the different criteria used in the study</span></span></span><span><span><span>.
文摘针对三支高斯混合聚类算法(three-way Gaussian mixture model,T-GMM)的阈值通常为人为设定,增加算法的不确定性的问题,本文中将阴影集思想融入三支高斯混合模型,提出一种基于阴影集的三支高斯混合聚类算法(three-way Gaussian mixture model clustering based on shadow sets,ST-GMM);ST-GMM算法先构造一个关于阈值的目标函数,再通过优化算法选取最优阈值。基于10个不同类型的UCI数据集的实验结果表明:ST-GMM算法不仅继承了T-GMM算法的特点,同时有效地降低了人为设定阈值的误差,聚类细节的刻画也更加准确。针对评价指标的测试进一步验证了ST-GMM算法具有良好的聚类性能。