The fluorescence spectrum of the ether-water solution excited by the ultraviolet light with the wavelength of 245 nm is experimentally detected. Based on the second derivative analysis, the fluorescence spectrum of th...The fluorescence spectrum of the ether-water solution excited by the ultraviolet light with the wavelength of 245 nm is experimentally detected. Based on the second derivative analysis, the fluorescence spectrum of the ether-water solution is used as Gaussian decomposition and seven Gaussian spectral lines are obtained. The center wavelength, the peak intensity and the half peak bandwidth of each Gaussian spectral line are measured, and the multi-peak fitting is made by using Gaussian primitive parameters. The highest and the lowest oscillation energy level differences in the ground state of each Gaussian spectrum are calculated. It is found that there are seven types of luminescent association molecules formed by ether and water molecules in different configurations existed in the solution. The location of each optimum absorption wavelength and the half peak bandwidth of the Gaussian spectral line is different. The energy level difference with the central wavelength of 304 nm attains the maximum value The result can contribute to the study of the molecular association in ether-water solution.展开更多
The influence of pre-annealing on thermal stability of the amorphousZr_(70)Cu_(20)Ni_(10) alloy was reported by employing the differential scanning calorimetry (DSC)and high-resolution transmission electron microscopy...The influence of pre-annealing on thermal stability of the amorphousZr_(70)Cu_(20)Ni_(10) alloy was reported by employing the differential scanning calorimetry (DSC)and high-resolution transmission electron microscopy (HRTEM) techniques. It has been observed thatthe supercooled liquid region decreases with increasing the annealing time under isothermalconditions, indicating that the thermal stability of the amorphous Zr_(70)Cu_(20)Ni_(10) alloydecreases gradually. HRTEM observations reveal that there exist some ordered atomic clusters in theamorphous matrix at the relaxation stage. These ordered atomic clusters can be regarded asprecursors for the precipitation of the crystalline phases in the subsequent crystal-lizationprocess. The reasons resulting in the decrease in thermal stability of the amorphousZr_(70)Cu_(20)Ni_(10) alloy with annealing time are discussed through the Gaussian decomposition forthe radial distribution function of the amorphous Zr_(70)Cu_(20)Ni_(10) alloy.展开更多
This paper proposes a new signal noise level estimation approach by local regions. The estimated noise variance is applied as the threshold for an improved empirical mode decomposition(EMD) based signal denoising me...This paper proposes a new signal noise level estimation approach by local regions. The estimated noise variance is applied as the threshold for an improved empirical mode decomposition(EMD) based signal denoising method. The proposed estimation method can effectively extract the candidate regions for the noise level estimation by measuring the correlation coefficient between noisy signal and a Gaussian filtered signal. For the improved EMD based method, the situation of decomposed intrinsic mode function(IMFs) which contains noise and signal simultaneously are taken into account. Experimental results from two simulated signals and an X-ray pulsar signal demonstrate that the proposed method can achieve better performance than the conventional EMD and wavelet transform(WT) based denoising methods.展开更多
基金Supported by the Natural Science Foundation of Jiangsu Province(BK2007204)the Natural Sci-ence Foundation of Educational Department of Jiangsu Province(07KJD140208)~~
文摘The fluorescence spectrum of the ether-water solution excited by the ultraviolet light with the wavelength of 245 nm is experimentally detected. Based on the second derivative analysis, the fluorescence spectrum of the ether-water solution is used as Gaussian decomposition and seven Gaussian spectral lines are obtained. The center wavelength, the peak intensity and the half peak bandwidth of each Gaussian spectral line are measured, and the multi-peak fitting is made by using Gaussian primitive parameters. The highest and the lowest oscillation energy level differences in the ground state of each Gaussian spectrum are calculated. It is found that there are seven types of luminescent association molecules formed by ether and water molecules in different configurations existed in the solution. The location of each optimum absorption wavelength and the half peak bandwidth of the Gaussian spectral line is different. The energy level difference with the central wavelength of 304 nm attains the maximum value The result can contribute to the study of the molecular association in ether-water solution.
基金This work is financially supported by the National Natural Science Foundation of China (No.59871025 and 50171006),Hi-tech ResearchDevelopment Program of China(863)(No.2001AA331010)National Major Basic Research Project of China(973)(No.G2000 6720
文摘The influence of pre-annealing on thermal stability of the amorphousZr_(70)Cu_(20)Ni_(10) alloy was reported by employing the differential scanning calorimetry (DSC)and high-resolution transmission electron microscopy (HRTEM) techniques. It has been observed thatthe supercooled liquid region decreases with increasing the annealing time under isothermalconditions, indicating that the thermal stability of the amorphous Zr_(70)Cu_(20)Ni_(10) alloydecreases gradually. HRTEM observations reveal that there exist some ordered atomic clusters in theamorphous matrix at the relaxation stage. These ordered atomic clusters can be regarded asprecursors for the precipitation of the crystalline phases in the subsequent crystal-lizationprocess. The reasons resulting in the decrease in thermal stability of the amorphousZr_(70)Cu_(20)Ni_(10) alloy with annealing time are discussed through the Gaussian decomposition forthe radial distribution function of the amorphous Zr_(70)Cu_(20)Ni_(10) alloy.
基金supported by the China Aerospace Science and Technology Corporation’s Aerospace Science and Technology Innovation Fund Project(casc2013086)CAST Innovation Fund Project(cast2012028)
文摘This paper proposes a new signal noise level estimation approach by local regions. The estimated noise variance is applied as the threshold for an improved empirical mode decomposition(EMD) based signal denoising method. The proposed estimation method can effectively extract the candidate regions for the noise level estimation by measuring the correlation coefficient between noisy signal and a Gaussian filtered signal. For the improved EMD based method, the situation of decomposed intrinsic mode function(IMFs) which contains noise and signal simultaneously are taken into account. Experimental results from two simulated signals and an X-ray pulsar signal demonstrate that the proposed method can achieve better performance than the conventional EMD and wavelet transform(WT) based denoising methods.