Based on the Eigen and Crow-Kimura models with a single-peak fitness landscape, we propose the fitness values of all sequence types to be Gausslan distributed random variables to incorporate the effects of the fluctua...Based on the Eigen and Crow-Kimura models with a single-peak fitness landscape, we propose the fitness values of all sequence types to be Gausslan distributed random variables to incorporate the effects of the fluctuations of the fitness landscapes (noise of environments) and investigate the concentration distribution and error threshold of quasispecies by performing an ensemble average within this theoretical framework. We find that a small fluctuation of the fitness landscape causes only a slight change in the concentration distribution and error threshold, which implies that the error threshold is stable against small perturbations. However, for a sizable fluctuation, quite different from the previous deterministic models, our statistical results show that the transition from quasi-species to error catastrophe is not so sharp, indicating that the error threshold is located within a certain range and has a shift toward a larger value. Our results are qualitatively in agreement with the experimental data and provide a new implication for antiviral strategies.展开更多
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10475008, 10675170, and 10435020, and the Department of Nuclear Physics of China Institute of Atomic Energy under Grant Nos. 11SZZ-200501 and 11SZZ-200601
文摘Based on the Eigen and Crow-Kimura models with a single-peak fitness landscape, we propose the fitness values of all sequence types to be Gausslan distributed random variables to incorporate the effects of the fluctuations of the fitness landscapes (noise of environments) and investigate the concentration distribution and error threshold of quasispecies by performing an ensemble average within this theoretical framework. We find that a small fluctuation of the fitness landscape causes only a slight change in the concentration distribution and error threshold, which implies that the error threshold is stable against small perturbations. However, for a sizable fluctuation, quite different from the previous deterministic models, our statistical results show that the transition from quasi-species to error catastrophe is not so sharp, indicating that the error threshold is located within a certain range and has a shift toward a larger value. Our results are qualitatively in agreement with the experimental data and provide a new implication for antiviral strategies.