针对局部线性嵌入算法(Local Linear Embedding,LLE)利用试凑法寻找近邻数耗时的缺陷性,提出一种增强的核局部线性嵌入算法(Enhanced Kernel Local Linear Embedding,EKLLE)自动为样本分配邻域;该算法以高斯核函数为核心改进标准LLE距...针对局部线性嵌入算法(Local Linear Embedding,LLE)利用试凑法寻找近邻数耗时的缺陷性,提出一种增强的核局部线性嵌入算法(Enhanced Kernel Local Linear Embedding,EKLLE)自动为样本分配邻域;该算法以高斯核函数为核心改进标准LLE距离度量准则,结合样本的类别信息,无需人工干预自动为样本设置不同的近邻数,克服了试凑法获得最优结果时需要大量时间;最后在各样本近邻数不相同的情况下对数据进行维数简约及待测样本分类。EKLLE算法有效地将高维基因表达谱数据映射到低维本质空间中,解决了传统LLE算法不能很好地处理含噪声或者稀疏数据的缺点。通过对比其他肿瘤样本分类实验,验证本文方法的实时性和精确性。展开更多
LncRNA-疾病关联预测的计算方法是解决传统生物学实验昂贵且费时的有效途径,其中基于机器学习的计算方法是当前研究热点,但其存在着未充分考虑lncRNA-疾病关联矩阵的局部结构和全局结构的问题.因此,本文提出了一种lncRNA与疾病潜在关联...LncRNA-疾病关联预测的计算方法是解决传统生物学实验昂贵且费时的有效途径,其中基于机器学习的计算方法是当前研究热点,但其存在着未充分考虑lncRNA-疾病关联矩阵的局部结构和全局结构的问题.因此,本文提出了一种lncRNA与疾病潜在关联的多层线性投影预测方法(MLPLDA:Multi-layer linear projection for predicting lncRNA-disease association).MLPLDA利用组合加权整合lncRNA和疾病的两种相似性,然后用WKNKN重构原始的lncRNA-疾病关联矩阵,最后使用堆叠层策略的多层线性投影进行lncRNA-疾病关联预测.在留一和五折交叉验证实验中,MLPLDA获得的AUC分别是0.8807和0.8563±0.0045,体现了其可靠的性能.在3种疾病(肺癌,乳腺癌和骨肉瘤)的案例研究中,MLPLDA能够有效预测与3种疾病有关系的lncRNA.展开更多
文摘针对局部线性嵌入算法(Local Linear Embedding,LLE)利用试凑法寻找近邻数耗时的缺陷性,提出一种增强的核局部线性嵌入算法(Enhanced Kernel Local Linear Embedding,EKLLE)自动为样本分配邻域;该算法以高斯核函数为核心改进标准LLE距离度量准则,结合样本的类别信息,无需人工干预自动为样本设置不同的近邻数,克服了试凑法获得最优结果时需要大量时间;最后在各样本近邻数不相同的情况下对数据进行维数简约及待测样本分类。EKLLE算法有效地将高维基因表达谱数据映射到低维本质空间中,解决了传统LLE算法不能很好地处理含噪声或者稀疏数据的缺点。通过对比其他肿瘤样本分类实验,验证本文方法的实时性和精确性。
文摘LncRNA-疾病关联预测的计算方法是解决传统生物学实验昂贵且费时的有效途径,其中基于机器学习的计算方法是当前研究热点,但其存在着未充分考虑lncRNA-疾病关联矩阵的局部结构和全局结构的问题.因此,本文提出了一种lncRNA与疾病潜在关联的多层线性投影预测方法(MLPLDA:Multi-layer linear projection for predicting lncRNA-disease association).MLPLDA利用组合加权整合lncRNA和疾病的两种相似性,然后用WKNKN重构原始的lncRNA-疾病关联矩阵,最后使用堆叠层策略的多层线性投影进行lncRNA-疾病关联预测.在留一和五折交叉验证实验中,MLPLDA获得的AUC分别是0.8807和0.8563±0.0045,体现了其可靠的性能.在3种疾病(肺癌,乳腺癌和骨肉瘤)的案例研究中,MLPLDA能够有效预测与3种疾病有关系的lncRNA.