期刊文献+
共找到106篇文章
< 1 2 6 >
每页显示 20 50 100
Improved pruning algorithm for Gaussian mixture probability hypothesis density filter 被引量:7
1
作者 NIE Yongfang ZHANG Tao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第2期229-235,共7页
With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved ... With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved pruning algorithm for the GM-PHD filter, which utilizes not only the Gaussian components’ means and covariance, but their weights as a new criterion to improve the estimate accuracy of the conventional pruning algorithm for tracking very closely proximity targets. Moreover, it solves the end-less while-loop problem without the need of a second merging step. Simulation results show that this improved algorithm is easier to implement and more robust than the formal ones. 展开更多
关键词 gaussian mixture probability hypothesis density(GM-PHD) filter pruning algorithm proximity targets clutter rate
下载PDF
A NEW DATA ASSOCIATION ALGORITHM USING PROBABILITY HYPOTHESIS DENSITY FILTER 被引量:2
2
作者 Huang Zhipei Sun Shuyan Wu Jiankang 《Journal of Electronics(China)》 2010年第2期218-223,共6页
Probability Hypothesis Density (PHD) filtering approach has shown its advantages in tracking time varying number of targets even when there are noise,clutter and misdetection. For linear Gaussian Mixture (GM) system,P... Probability Hypothesis Density (PHD) filtering approach has shown its advantages in tracking time varying number of targets even when there are noise,clutter and misdetection. For linear Gaussian Mixture (GM) system,PHD filter has a closed form recursion (GMPHD). But PHD filter cannot estimate the trajectories of multi-target because it only provides identity-free estimate of target states. Existing data association methods still remain a big challenge mostly because they are com-putationally expensive. In this paper,we proposed a new data association algorithm using GMPHD filter,which significantly alleviated the heavy computing load and performed multi-target trajectory tracking effectively in the meantime. 展开更多
关键词 Multi-target trajectory tracking probability hypothesis density (PHD) gaussian mixture ((]M) model Multiple hypotheses detection Peak-to-track association
下载PDF
无源声呐水下多目标融合跟踪方法 被引量:1
3
作者 梁国龙 张博宇 +3 位作者 齐滨 郝宇 杜致尧 李想 《声学学报》 EI CAS CSCD 北大核心 2024年第3期501-512,共12页
针对海洋环境噪声导致弱目标在不同子频带检测结果差异较大,致使以全频带探测结果为输入的跟踪算法出现性能退化的问题,提出一种子带融合跟踪方法。该方法利用改进的高斯混合概率假设密度滤波器对各频率子带输出的方位估计结果进行跟踪... 针对海洋环境噪声导致弱目标在不同子频带检测结果差异较大,致使以全频带探测结果为输入的跟踪算法出现性能退化的问题,提出一种子带融合跟踪方法。该方法利用改进的高斯混合概率假设密度滤波器对各频率子带输出的方位估计结果进行跟踪,并采用广义协方差交集准则对子带跟踪结果进行融合,以获得综合各子带信息的跟踪结果。仿真结果表明,所提方法可以提高弱目标在各子带信噪比不均衡情况下的跟踪能力,且运算时间与对比方法较为接近。海试数据处理结果进一步验证了所提方法的有效性。 展开更多
关键词 无源声呐 广义协方差交集 高斯混合概率假设密度滤波器 子带融合跟踪
下载PDF
基于VSMM的GMCPHD滤波算法在多机动目标跟踪的应用 被引量:3
4
作者 周卫东 张鹤冰 廖成毅 《系统工程与电子技术》 EI CSCD 北大核心 2013年第1期9-14,共6页
针对交互多模型(interacting multiple model,IMM)在多机动目标跟踪算法中存在的缺陷以及目标跟踪精度问题,提出了基于变结构多模型(variable structure multiple model,VSMM)的高斯混合基数概率假设密度(Gaussian mixture cardinalized... 针对交互多模型(interacting multiple model,IMM)在多机动目标跟踪算法中存在的缺陷以及目标跟踪精度问题,提出了基于变结构多模型(variable structure multiple model,VSMM)的高斯混合基数概率假设密度(Gaussian mixture cardinalized probability hypothesis density,GMCPHD)滤波算法。该算法利用了VSMM具有自适应性、时变性的特点,达到了在某一时刻能够选取与目标运动模式相匹配的模型集合的目的,相比于IMM考虑的仅是固定的模式集合具有很强的优越性。此外,GMCPHD滤波算法不仅避免了数据关联问题,而且通过高斯分布递推PHD函数的同时递推基数分布。最后,利用雷达作为传感器,对跟踪机动目标进行仿真,证明VSMM相比于IMM对于多机动目标跟踪更具有优越性,同时验证了VSMM-GMCPHD滤波算法具有提高机动目标跟踪精度,减小跟踪误差的作用。 展开更多
关键词 机动目标跟踪 高斯混合基数概率假设密度 交互多模型 变机构多模型
下载PDF
计算高效的分布式多传感器PHD融合方法
5
作者 王奎武 张秦 虎小龙 《现代雷达》 CSCD 北大核心 2024年第5期1-8,共8页
基于广义协方差交集(GCI)融合理论,提出一种计算高效的分布式多传感器多目标跟踪算法,其中概率假设密度(PHD)滤波器在每个传感器节点运行,进行滤波处理。GCI用于融合多个PHD时,融合密度包括大量融合假设,这些假设随着高斯分量的数量增... 基于广义协方差交集(GCI)融合理论,提出一种计算高效的分布式多传感器多目标跟踪算法,其中概率假设密度(PHD)滤波器在每个传感器节点运行,进行滤波处理。GCI用于融合多个PHD时,融合密度包括大量融合假设,这些假设随着高斯分量的数量增加呈指数增长。因此,GCI融合在实际运行中往往难以计算。为了提高多传感器融合的运算效率,文中通过距离度量将高斯分量聚类,然后进行孤立。距离度量可计算出目标融合后的密度权重,丢弃权重可忽略不计的融合假设,就能够构建简化的近似密度函数。分析表明,所提出的融合算法相较于传统的GCI融合算法,计算效率能够呈倍数提升。在先后出现12个目标的仿真场景中,通过实验验证了所提融合算法的有效性。 展开更多
关键词 多目标跟踪 广义协方差交集 高斯混合概率假设密度滤波器 传感器融合 计算效率
下载PDF
一种改进的GM-C-CPHD空间多目标跟踪算法
6
作者 谢贝旭 张艳 +1 位作者 陈金涛 张任莉 《上海航天(中英文)》 CSCD 2024年第1期89-96,共8页
随着空间目标的数目急剧上升,提高空间多目标跟踪精度成为必然要求,但空间多目标跟踪存在轨道动力学模型不完善的问题。针对该问题,提出一种改进的高斯混合势概率假设密度滤波(GM-C-CPHD)算法。通过在轨道动力学模型中考虑一个不确定性... 随着空间目标的数目急剧上升,提高空间多目标跟踪精度成为必然要求,但空间多目标跟踪存在轨道动力学模型不完善的问题。针对该问题,提出一种改进的高斯混合势概率假设密度滤波(GM-C-CPHD)算法。通过在轨道动力学模型中考虑一个不确定性模型参数,即面质比参数(AMR),基于协方差传递面质比参数对位置、速度状态估计的影响,提高空间目标跟踪精度。仿真分析表明:相对于GM-CPHD滤波器,目标数量的跟踪和状态估计性能均有所提高,具有良好的应用前景。 展开更多
关键词 空间多目标跟踪 高斯混合 势概率假设密度滤波 不确定性参数 面质比(AMR)
下载PDF
基于高斯混合概率假设滤波的水下目标跟踪算法 被引量:1
7
作者 马雪飞 李胤 +3 位作者 吴英姿 赵春雨 吴燕妮 Waleed Raza 《应用声学》 CSCD 北大核心 2023年第2期249-259,共11页
为了解决传统水下目标跟踪中目标数目估计不准确、状态估计误差增长过快的问题,提出了一种基于高斯混合概率假设滤波的水下目标跟踪算法。该算法基于双基地观测模型,采用高斯混合概率假设滤波算法处理方位和时延信息,利用粒子群算法处... 为了解决传统水下目标跟踪中目标数目估计不准确、状态估计误差增长过快的问题,提出了一种基于高斯混合概率假设滤波的水下目标跟踪算法。该算法基于双基地观测模型,采用高斯混合概率假设滤波算法处理方位和时延信息,利用粒子群算法处理多普勒频率获得矢量速度,进一步提升算法的跟踪精度。结果表明,该算法能完成在杂波环境下对目标的跟踪,相比传统的关联算法,能够有效地实现目标个数估计和抑制状态误差增长的目的。 展开更多
关键词 水下目标跟踪 量测信息 高斯混合概率假设滤波 粒子群算法
下载PDF
基于BELLHOP模型的水下多目标跟踪算法研究 被引量:1
8
作者 高阗琦 陈虹宇 +1 位作者 张峻铭 李可非 《声学技术》 CSCD 北大核心 2023年第2期248-255,共8页
针对高频主动声呐的深海多目标跟踪问题,提出了基于BELLHOP模型的无迹卡尔曼滤波-高斯混合概率假设密度(Unscentesd Kalman Filter-Gaussian Mixture-Probability Hypothesis Density,UKF-GM-PHD)水下多目标跟踪算法。该算法首先利用BEL... 针对高频主动声呐的深海多目标跟踪问题,提出了基于BELLHOP模型的无迹卡尔曼滤波-高斯混合概率假设密度(Unscentesd Kalman Filter-Gaussian Mixture-Probability Hypothesis Density,UKF-GM-PHD)水下多目标跟踪算法。该算法首先利用BELLHOP射线声学模型,计算出本征声线、目标信号的幅度、相位及时延信息,以此构造目标回波信号并叠加高斯白噪声。然后,由回波信号计算得到目标相对于观测站的距离、方位角和俯仰角信息,作为目标跟踪系统中的量测信息。最后利用提出的UKF-GM-PHD多目标跟踪算法,实现高频主动声呐非线性系统的多目标跟踪。仿真结果表明,在深海高频主动声呐条件下,文章提出的UKF-GM-PHD多目标跟踪算法较传统高斯混合概率假设密度(Gaussian Mixture Probability Hypothesis Density,GM-PHD)方法,明显降低了目标丢失率,并且最优子模式指派统计量(Optimal Sub-Patter Assignment,OSPA)距离也更小,跟踪效果更好。 展开更多
关键词 BELLHOP模型 目标回波信号 高斯混合概率假设密度 无迹卡尔曼滤波
下载PDF
车载分布式MIMO雷达原理与实测数据分析
9
作者 霍嘉玮 胡琨 +3 位作者 宋月 李中余 武俊杰 杨建宇 《现代雷达》 CSCD 北大核心 2023年第1期1-9,共9页
文中分析了分布式构型多输入多输出(MIMO)雷达及其处理框架,并针对车载应用场景,结合超分辨测角算法给出了一套基于分布式MIMO雷达的成像、测速、跟踪处理流程。在此处理流程的基础上,文中创新性地提出了基于高斯混合概率假设密度(GM-P... 文中分析了分布式构型多输入多输出(MIMO)雷达及其处理框架,并针对车载应用场景,结合超分辨测角算法给出了一套基于分布式MIMO雷达的成像、测速、跟踪处理流程。在此处理流程的基础上,文中创新性地提出了基于高斯混合概率假设密度(GM-PHD)跟踪算法的距离-角度-速度关联方案,并对GM-PHD算法进行了改进,增加了标签配对功能,同时实现了多维信息的快速关联和目标的航迹跟踪。最后,利用实测数据验证了相关算法的有效性和实用性,与单一雷达成像及跟踪结果对比并进行了详细分析,验证了分布式MIMO雷达具有更优的目标检测性能及目标跟踪效果。 展开更多
关键词 分布式MIMO雷达 超分辨波达方向估计 高斯混合概率假设密度 目标跟踪 多维信息关联
下载PDF
多扩展目标的高斯混合概率假设密度滤波器 被引量:13
10
作者 韩玉兰 朱洪艳 +1 位作者 韩崇昭 王静 《西安交通大学学报》 EI CAS CSCD 北大核心 2014年第4期95-101,共7页
针对多扩展目标跟踪中状态信息难以估计的问题,提出了一种可以估计扩展目标运动状态和形状信息的多扩展目标高斯混合概率假设密度(RHM-GMPHD)滤波器。首先利用描述凸星形扩展目标量测源分布的随机超曲面模型和传感器量测方程,建立扩展... 针对多扩展目标跟踪中状态信息难以估计的问题,提出了一种可以估计扩展目标运动状态和形状信息的多扩展目标高斯混合概率假设密度(RHM-GMPHD)滤波器。首先利用描述凸星形扩展目标量测源分布的随机超曲面模型和传感器量测方程,建立扩展目标运动状态及形状信息与量测之间关系的伪量测函数;然后结合扩展目标状态预报信息,推导了扩展目标状态更新方程,递推地对扩展目标运动状态及形状信息进行估计跟踪。此外,还建立了Jaccard距离来度量RHMGMPHD滤波器对目标形状的估计性能。与联合概率数据关联(JPDA)滤波器和GMPHD滤波器相比,RHM-GMPHD滤波器不仅可以估计凸星形扩展目标的形状信息,并能有效提高对目标数和运动状态的估计精度。仿真实验表明,RHM-GMPHD滤波器对质心估计的均方根误差分别约为JPDA和GMPHD滤波器的1/3和1/2,对目标数的估计接近真实值,对形状估计的Jaccard距离一般小于0.2。 展开更多
关键词 扩展目标跟踪 高斯混合概率假设密度 随机超曲面模型 形状估计
下载PDF
高斯混合扩展目标概率假设密度滤波器的收敛性分析 被引量:16
11
作者 连峰 韩崇昭 +1 位作者 刘伟峰 元向辉 《自动化学报》 EI CSCD 北大核心 2012年第8期1343-1352,共10页
研究了高斯混合扩展目标概率假设密度(Gaussian mixture extended-target probability hypothesis density,GM-EPHD)滤波器的收敛性问题,证明了在杂波强度先验已知且扩展目标的期望测量个数连续有界的假设条件下,若该GM-EPHD滤波器的GM... 研究了高斯混合扩展目标概率假设密度(Gaussian mixture extended-target probability hypothesis density,GM-EPHD)滤波器的收敛性问题,证明了在杂波强度先验已知且扩展目标的期望测量个数连续有界的假设条件下,若该GM-EPHD滤波器的GM项趋于无穷多,那么它一致收敛于真实的EPHD滤波器.并且,本文还证明了该算法在弱非线性条件下的扩展卡尔曼(Extended Kalman,EK)滤波近似实现—EK-GM-EPHD滤波器,在每个GM项的协方差趋于0时,也一致收敛于真实的EPHD滤波器.本文的研究目的在于从理论上给出GM-EPHD和EK-GM-EPHD滤波器的收敛性结果以及它们满足一致收敛性的条件. 展开更多
关键词 扩展目标跟踪 概率假设密度滤波器 高斯混合方法 收敛性分析
下载PDF
用于多个机动目标的混合高斯概率假设密度跟踪器 被引量:8
12
作者 刘贵喜 周承兴 +1 位作者 王泽毅 廖兴海 《控制理论与应用》 EI CAS CSCD 北大核心 2011年第8期1087-1092,共6页
现有的混合高斯概率假设密度(GM-PHD)跟踪器不仅可以估计时变的多目标状态,还能辨识不同目标并保持其轨迹连续性.但当多个目标发生机动时,其稳定性较差,容易丢失目标.针对这一问题,本文提出一种能跟踪多个机动目标的混合高斯概率假设密... 现有的混合高斯概率假设密度(GM-PHD)跟踪器不仅可以估计时变的多目标状态,还能辨识不同目标并保持其轨迹连续性.但当多个目标发生机动时,其稳定性较差,容易丢失目标.针对这一问题,本文提出一种能跟踪多个机动目标的混合高斯概率假设密度跟踪器算法.算法在GM-PHD滤波的框架上采用修正的输入估计方法将目标的概率假设密度(PHD)表示成混合高斯形式,并利用不同的标记辨识各个高斯分量,然后通过PHD滤波方程迭代这些高斯分量和对应的标记,最终达到跟踪多个机动目标的目的.仿真实验表明,和传统的GM-PHD跟踪器相比,新算法能以更高的稳定性跟踪多个机动目标. 展开更多
关键词 多目标跟踪 随机集 概率假设密度 混合高斯 机动目标
下载PDF
一种具有信息保持能力的GM-PHD滤波器 被引量:8
13
作者 刘宗香 谢维信 +1 位作者 王品 余友 《电子学报》 EI CAS CSCD 北大核心 2013年第8期1603-1608,共6页
概率假设密度(PHD)滤波器是解决虚警、漏检和目标数未知情况下多目标跟踪问题的新方法.然而在该滤波器中已存在的目标一旦在某个时刻不能被传感器检测到,漏检目标的大量信息会被滤波器丢弃.为解决漏检目标的信息丢失问题,对PHD滤波器的... 概率假设密度(PHD)滤波器是解决虚警、漏检和目标数未知情况下多目标跟踪问题的新方法.然而在该滤波器中已存在的目标一旦在某个时刻不能被传感器检测到,漏检目标的大量信息会被滤波器丢弃.为解决漏检目标的信息丢失问题,对PHD滤波器的预测和更新方程进行了修正,提出了一种具有信息保持能力的PHD滤波器.在此基础上提出了适用于线性高斯模型的修正PHD滤波器高斯混合(GM)实现算法.仿真实验结果表明,与现有的PHD滤波器相比,在存在漏检的情况下所提出的GM-PHD滤波器能够提供更好的多目标跟踪能力. 展开更多
关键词 多目标跟踪 概率假设密度滤波器 高斯混合实现 线性高斯模型
下载PDF
基于高斯混合势化概率假设密度的脉冲多普勒雷达多目标跟踪算法 被引量:6
14
作者 吴卫华 江晶 +1 位作者 冯讯 刘重阳 《电子与信息学报》 EI CSCD 北大核心 2015年第6期1490-1494,共5页
为在新兴的随机有限集(RFS)框架下充分利用多普勒信息跟踪杂波环境下的多目标,该文提出基于高斯混合势化概率假设密度(GM-CPHD)的脉冲多普勒雷达多目标跟踪(MTT)算法。该算法在标准GM-CPHD基础上,在使用位置量测更新状态后,再利用多普... 为在新兴的随机有限集(RFS)框架下充分利用多普勒信息跟踪杂波环境下的多目标,该文提出基于高斯混合势化概率假设密度(GM-CPHD)的脉冲多普勒雷达多目标跟踪(MTT)算法。该算法在标准GM-CPHD基础上,在使用位置量测更新状态后,再利用多普勒量测进行序贯更新,可获得更精确的似然函数和状态估计。仿真结果验证了该算法的有效性,表明在GM-CPHD基础上引入目标的多普勒信息可有效抑制杂波,显著改善跟踪性能。 展开更多
关键词 多目标跟踪 随机有限集 概率假设密度 高斯混合势化概率假设密度 脉冲多普勒雷达
下载PDF
基于GM-CPHD滤波算法的主动声呐目标跟踪 被引量:4
15
作者 陈晓 李亚安 +1 位作者 李余兴 蔚婧 《西北工业大学学报》 EI CAS CSCD 北大核心 2018年第4期656-663,共8页
水下多目标运动状态估计一直是主动声呐目标跟踪的难点问题。为了实现对可变数目水下多目标运动状态的估计,将随机有限集理论应用于多目标跟踪,不仅避免了多目标跟踪数据关联问题,而且解决了多目标跟踪过程中可变数目目标运动状态估计... 水下多目标运动状态估计一直是主动声呐目标跟踪的难点问题。为了实现对可变数目水下多目标运动状态的估计,将随机有限集理论应用于多目标跟踪,不仅避免了多目标跟踪数据关联问题,而且解决了多目标跟踪过程中可变数目目标运动状态估计。传统的PHD滤波算法对目标数目估计存在敏感性,虽然CPHD滤波算法引入了对势分布的估计提高了对目标数目估计的精确性,但同时也增加了其计算量。对于高斯线性目标跟踪系统,GM-CPHD滤波算法对目标数目的估计比GM-PHD滤波更加精确。利用椭圆跟踪门策略减小了GM-CPHD滤波算法的计算量。同时,结合水下目标跟踪的特点,利用声呐方程得到一定虚警概率条件下的检测概率与距离关系的解析式,提出了一种适合于水下目标跟踪的自适应检测概率GM-CPHD滤波算法,仿真结果表明:该算法在多目标跟踪中可以更有效地实现目标状态及数目的估计。 展开更多
关键词 多目标跟踪 随机有限集 GM-PHD GM-CPHD 声呐方程
下载PDF
基于SMC-PHDF的部分可分辨的群目标跟踪算法 被引量:27
16
作者 连峰 韩崇昭 +1 位作者 刘伟峰 元向辉 《自动化学报》 EI CSCD 北大核心 2010年第5期731-741,共11页
提出一种基于粒子概率假设密度滤波器(Sequential Monte Carlo probability hypothesis density filter,SMC-PHDF)的部分可分辨的群目标跟踪算法.该算法可直接获得群而非个体的个数和状态估计.这里群的状态包括群的质心状态和形状.为了... 提出一种基于粒子概率假设密度滤波器(Sequential Monte Carlo probability hypothesis density filter,SMC-PHDF)的部分可分辨的群目标跟踪算法.该算法可直接获得群而非个体的个数和状态估计.这里群的状态包括群的质心状态和形状.为了估计群的个数和状态,该算法利用高斯混合模型(Gaussian mixture models,GMM)拟合SMC-PHDF中经重采样后的粒子分布,这里混合模型的元素个数和参数分别对应于群的个数和状态.期望最大化(Expectation maximum,EM)算法和马尔科夫链蒙特卡洛(Markov chain Monte Carlo,MCMC)算法分别被用于估计混合模型的参数.混合模型的元素个数可通过删除、合并及分裂算法得到.100次蒙特卡洛(Monte Carlo,MC)仿真实验表明该算法可有效跟踪部分可分辨的群目标.相比EM算法,MCMC算法能够更好地提取群的个数和状态,但它的计算量要大于EM算法. 展开更多
关键词 群目标跟踪 粒子概率假设密度滤波器 高斯混合模型 期望最大化算法 马尔科夫链蒙特卡洛算法
下载PDF
改进的高斯粒子概率假设密度滤波算法 被引量:6
17
作者 周承兴 刘贵喜 +1 位作者 侯连勇 钟兴质 《控制理论与应用》 EI CAS CSCD 北大核心 2011年第7期1005-1008,共4页
高斯粒子概率假设密度滤波在预测和更新时需要进行粒子近似和重新采样,这在一定程度上降低了算法的精度和实时性.针对这一问题,提出一种改进的高斯粒子概率假设密度滤波算法,算法通过粒子的方式表示并传递目标的概率假设密度(PHD)预测值... 高斯粒子概率假设密度滤波在预测和更新时需要进行粒子近似和重新采样,这在一定程度上降低了算法的精度和实时性.针对这一问题,提出一种改进的高斯粒子概率假设密度滤波算法,算法通过粒子的方式表示并传递目标的概率假设密度(PHD)预测值,然后直接利用这些表征PHD预测值的粒子进行更新,最后利用具有最大似然性的粒子将更新后的PHD表示为混合高斯形式.仿真实验表明,和高斯粒子概率假设密度滤波相比,改进算法的多目标误差距离减少了约30%,运行时间减少了约50%. 展开更多
关键词 多目标跟踪 随机集 概率假设密度 混合高斯 粒子近似
下载PDF
基于高斯混合带势概率假设密度滤波器的未知杂波下多机动目标跟踪算法 被引量:8
18
作者 胡子军 张林让 +1 位作者 张鹏 王纯 《电子与信息学报》 EI CSCD 北大核心 2015年第1期116-122,共7页
多模型的随机有限集(RFS)类方法是一类有效的多机动目标跟踪算法,但是现有算法都假定杂波统计特性先验已知,不适用于未知杂波背景。该文以高斯混合带势概率假设密度滤波器(GMCPHDF)为基础,提出一种未知杂波下的多机动目标跟踪算法。该... 多模型的随机有限集(RFS)类方法是一类有效的多机动目标跟踪算法,但是现有算法都假定杂波统计特性先验已知,不适用于未知杂波背景。该文以高斯混合带势概率假设密度滤波器(GMCPHDF)为基础,提出一种未知杂波下的多机动目标跟踪算法。该算法对目标和杂波分别独立建模,通过最优高斯(BFG)估计方法对真实目标的强度函数进行预测,从而使多目标强度函数独立于机动目标的运动模型,实现各时刻真实目标的强度函数、杂波源期望个数以及真实目标和杂波源的混合势分布的迭代。仿真结果表明,该算法能够有效地联合估计多机动目标状态以及杂波期望个数。 展开更多
关键词 多机动目标跟踪 未知杂波 带势概率假设密度滤波器 最优高斯估计
下载PDF
一种新的多机动目标跟踪的GMPHD滤波算法 被引量:7
19
作者 郝燕玲 孟凡彬 +1 位作者 王素鑫 孙枫 《上海交通大学学报》 EI CAS CSCD 北大核心 2010年第7期873-877,共5页
针对多机动目标跟踪的传统数据关联算法约束条件苛刻、估计精度低、计算量大等问题,提出了一种基于随机集理论的非数据关联的多机动目标跟踪算法.该算法将高斯混合概率假设密度(GMPHD)滤波与"当前"统计模型的优点相结合,绕过... 针对多机动目标跟踪的传统数据关联算法约束条件苛刻、估计精度低、计算量大等问题,提出了一种基于随机集理论的非数据关联的多机动目标跟踪算法.该算法将高斯混合概率假设密度(GMPHD)滤波与"当前"统计模型的优点相结合,绕过了棘手的数据关联问题,能高效处理目标数较大的机动跟踪问题.在漏检、虚警、多机动目标交叉杂波复杂环境下进行了仿真实验,结果表明,该算法具有较高的跟踪精度和稳健的跟踪性能. 展开更多
关键词 多机动目标跟踪 随机有限集 高斯混合概率假设密度滤波 扩展卡尔曼滤波
下载PDF
未知杂波环境的GM-PHD平滑滤波器 被引量:4
20
作者 李翠芸 江舟 +1 位作者 李斌 周旋 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2015年第5期98-104,共7页
针对未知杂波环境下的多目标跟踪问题,提出一种未知杂波环境下的高斯混合概率假设密度前向后向平滑算法.该算法首先利用有限混合模型对杂波强度进行估计,克服了多目标跟踪中概率假设密度滤波器在杂波与先验知识不匹配情况下滤波性能急... 针对未知杂波环境下的多目标跟踪问题,提出一种未知杂波环境下的高斯混合概率假设密度前向后向平滑算法.该算法首先利用有限混合模型对杂波强度进行估计,克服了多目标跟踪中概率假设密度滤波器在杂波与先验知识不匹配情况下滤波性能急剧下降的缺点;其次采用平滑递归,利用多个量测数据对滤波值进行平滑,进而减小目标的位置误差.仿真结果表明,这种算法在未知杂波环境下具有较好的跟踪性能,且优于未进行平滑的未知杂波高斯混合概率假设密度滤波器. 展开更多
关键词 未知杂波 高斯混合概率假设密度 平滑 多目标跟踪
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部