The particle filter (PF) is a flexible and powerful sequen- tial Monte Carlo (SMC) technique capable of modeling nonlinear, non-Gaussian, and nonstationary dynamical systems. However, the generic PF suffers from p...The particle filter (PF) is a flexible and powerful sequen- tial Monte Carlo (SMC) technique capable of modeling nonlinear, non-Gaussian, and nonstationary dynamical systems. However, the generic PF suffers from particle degeneracy and sample im- poverishment, which greatly affects its performance for nonlinear, non-Gaussian tracking problems. To deal with those issues, an improved PF is proposed. The algorithm consists of a PF that uses an immune adaptive Gaussian mixture model (IAGM) based immune algorithm to re-approximate the posterior density. At the same time, three immune antibody operators are embed in the new filter. Instead of using a resample strategy, the newest obser- vation and conditional likelihood are integrated into those immune antibody operators to update the particles, which can further im- prove the diversity of particles, and drive particles toward their close local maximum of the posterior probability. The improved PF algorithm can produce a closed-form expression for the posterior state distribution. Simulation results show the proposed algorithm can maintain the effectiveness and diversity of particles and avoid sample impoverishment, and its performance is superior to several PFs and Kalman filters.展开更多
A key step of constructing active appearance model is requiring a set of appropriate training shapes with well-defined correspondences.In this paper,we introduce a novel point correspondence method(FB-CPD),which can i...A key step of constructing active appearance model is requiring a set of appropriate training shapes with well-defined correspondences.In this paper,we introduce a novel point correspondence method(FB-CPD),which can improve the accuracy of coherent point drift(CPD) by using the information of image feature.The objective function of the proposed method is defined by both of geometric spatial information and image feature information,and the origin Gaussian mixture model in CPD is modified according to the image feature of points.FB-CPD is tested on the 3D prostate and liver point sets through the simulation experiments.The registration error can be reduced efficiently by FB-CPD.Moreover,the active appearance model constructed by FB-CPD can obtain fine segmentation in 3D CT prostate image.Compared with the original CPD,the overlap ratio of voxels was improved from 88.7% to 90.2% by FB-CPD.展开更多
基金supported by the National Natural Science Foundation of China(6127327561402517+3 种基金61573375)the Open Research Fund of State Key Laboratory of Astronautic Dynamics(2012ADL-DW0202)the Natural Science Foundation of Shaanxi Province of China(2013JQ8035)the China Postdoctoral Science Foundation(2013M542331)
文摘The particle filter (PF) is a flexible and powerful sequen- tial Monte Carlo (SMC) technique capable of modeling nonlinear, non-Gaussian, and nonstationary dynamical systems. However, the generic PF suffers from particle degeneracy and sample im- poverishment, which greatly affects its performance for nonlinear, non-Gaussian tracking problems. To deal with those issues, an improved PF is proposed. The algorithm consists of a PF that uses an immune adaptive Gaussian mixture model (IAGM) based immune algorithm to re-approximate the posterior density. At the same time, three immune antibody operators are embed in the new filter. Instead of using a resample strategy, the newest obser- vation and conditional likelihood are integrated into those immune antibody operators to update the particles, which can further im- prove the diversity of particles, and drive particles toward their close local maximum of the posterior probability. The improved PF algorithm can produce a closed-form expression for the posterior state distribution. Simulation results show the proposed algorithm can maintain the effectiveness and diversity of particles and avoid sample impoverishment, and its performance is superior to several PFs and Kalman filters.
基金National Basic Research Program of China(973 Program)grant number:2010CB732505+1 种基金National Natural Science Foundation of Chinagrant number:30900380
文摘A key step of constructing active appearance model is requiring a set of appropriate training shapes with well-defined correspondences.In this paper,we introduce a novel point correspondence method(FB-CPD),which can improve the accuracy of coherent point drift(CPD) by using the information of image feature.The objective function of the proposed method is defined by both of geometric spatial information and image feature information,and the origin Gaussian mixture model in CPD is modified according to the image feature of points.FB-CPD is tested on the 3D prostate and liver point sets through the simulation experiments.The registration error can be reduced efficiently by FB-CPD.Moreover,the active appearance model constructed by FB-CPD can obtain fine segmentation in 3D CT prostate image.Compared with the original CPD,the overlap ratio of voxels was improved from 88.7% to 90.2% by FB-CPD.