A single-mode laser system with non-Gaussian and Gaussian noise is investigated. The stationary mean value and the normalized variance of the laser intensity are numerically calculated under the condition that the sta...A single-mode laser system with non-Gaussian and Gaussian noise is investigated. The stationary mean value and the normalized variance of the laser intensity are numerically calculated under the condition that the stationary probability distribution function (SPDF) is derived. The SPDF as a function of the laser intensity exhibits a maximum, The maximum becomes smaller with the increase of the correlation intensity or the non-Gaussian parameter, where the later is a measure of the deviation from the Gaussian characteristic. The maximum becomes larger as the correlation time increases. The laser intensity stationary mean value decreases with the increase of the correlation intensity or the non-Gaussian parameter while increases with the correlation time increasing. The laser intensity normalized variance increases with the increase of the correlation intensity or the non-Gaussian parameter while decreases as the correlation time increases.展开更多
This paper analyzes the characteristic of matching efficiency between the fundamental mode of two kinds of optical waveguides and its Gaussian approximate field.Then, it presents a new method where the mode-field half...This paper analyzes the characteristic of matching efficiency between the fundamental mode of two kinds of optical waveguides and its Gaussian approximate field.Then, it presents a new method where the mode-field half-width of Caussian approximation for the fundamental mode should be defined according to the maximal matching efficiency method. The relationship between the mode-field half-width of the Gaussian approximate field obtained from the maximal matching efficiency and normalized frequency is studied; furthermore, two formulas of mode-field half-widths as a function of normalized frequency are proposed.展开更多
By adding frequency modulated signals to the intensity equation of gain noise model of the single-mode laser driven by two coloured noises which are correlated, this paper uses the linear approximation method to calcu...By adding frequency modulated signals to the intensity equation of gain noise model of the single-mode laser driven by two coloured noises which are correlated, this paper uses the linear approximation method to calculate the power spectrum and signal-to-noise ratio (SNR) of the laser intensity. The results show that the SNR appears typical stochastic resonance with the variation of intensity of the pump noise and quantum noise. As the amplitude of a modulated signal has effects on the SNR, it shows suppression, monotone increasing, stochastic resonance, and multiple stochastic resonance with the variation of the frequency of a carrier signal and modulated signal.展开更多
We investigate photon statistical properties of the multiple-photon-added two-mode squeezed coherent states (PA- TMSCS). We find that the photon statistical properties are sensitive to the compound phase involved in...We investigate photon statistical properties of the multiple-photon-added two-mode squeezed coherent states (PA- TMSCS). We find that the photon statistical properties are sensitive to the compound phase involved in the TMSCS. Our numerical analyses show that the photon addition can enhance the cross-correlation and anti-bunching effects of the PA- TMSCS. Compared with that of the TMSCS, the photon number distribution of the PA-TMSCS is modulated by a factor that is a monotonically increasing function of the numbers of adding photons to each mode; further, that the photon addition essentially shifts the photon number distribution.展开更多
文摘A single-mode laser system with non-Gaussian and Gaussian noise is investigated. The stationary mean value and the normalized variance of the laser intensity are numerically calculated under the condition that the stationary probability distribution function (SPDF) is derived. The SPDF as a function of the laser intensity exhibits a maximum, The maximum becomes smaller with the increase of the correlation intensity or the non-Gaussian parameter, where the later is a measure of the deviation from the Gaussian characteristic. The maximum becomes larger as the correlation time increases. The laser intensity stationary mean value decreases with the increase of the correlation intensity or the non-Gaussian parameter while increases with the correlation time increasing. The laser intensity normalized variance increases with the increase of the correlation intensity or the non-Gaussian parameter while decreases as the correlation time increases.
基金Project supported by Natural Science Foundation of the Department of Science & Technology of Fujian Province of China (GrantNo 2007F5040)
文摘This paper analyzes the characteristic of matching efficiency between the fundamental mode of two kinds of optical waveguides and its Gaussian approximate field.Then, it presents a new method where the mode-field half-width of Caussian approximation for the fundamental mode should be defined according to the maximal matching efficiency method. The relationship between the mode-field half-width of the Gaussian approximate field obtained from the maximal matching efficiency and normalized frequency is studied; furthermore, two formulas of mode-field half-widths as a function of normalized frequency are proposed.
基金supported by the Key Project Scientific Research Foundation from the Education Department of Hubei Province of China(Grant No D200725001)
文摘By adding frequency modulated signals to the intensity equation of gain noise model of the single-mode laser driven by two coloured noises which are correlated, this paper uses the linear approximation method to calculate the power spectrum and signal-to-noise ratio (SNR) of the laser intensity. The results show that the SNR appears typical stochastic resonance with the variation of intensity of the pump noise and quantum noise. As the amplitude of a modulated signal has effects on the SNR, it shows suppression, monotone increasing, stochastic resonance, and multiple stochastic resonance with the variation of the frequency of a carrier signal and modulated signal.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11174114 and 61107055)the Natural Science Foundation of Wuxi Institute of Technology of China (Grant No.401301293)
文摘We investigate photon statistical properties of the multiple-photon-added two-mode squeezed coherent states (PA- TMSCS). We find that the photon statistical properties are sensitive to the compound phase involved in the TMSCS. Our numerical analyses show that the photon addition can enhance the cross-correlation and anti-bunching effects of the PA- TMSCS. Compared with that of the TMSCS, the photon number distribution of the PA-TMSCS is modulated by a factor that is a monotonically increasing function of the numbers of adding photons to each mode; further, that the photon addition essentially shifts the photon number distribution.