期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Spatial batch optimal design based on self-learning Gaussian process models for LPCVD processes 被引量:1
1
作者 孙培 谢磊 陈荣辉 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第12期1958-1964,共7页
Low pressure chemical vapor deposition(LPCVD) is one of the most important processes during semiconductor manufacturing.However,the spatial distribution of internal temperature and extremely few samples makes it hard ... Low pressure chemical vapor deposition(LPCVD) is one of the most important processes during semiconductor manufacturing.However,the spatial distribution of internal temperature and extremely few samples makes it hard to build a good-quality model of this batch process.Besides,due to the properties of this process,the reliability of the model must be taken into consideration when optimizing the MVs.In this work,an optimal design strategy based on the self-learning Gaussian process model(GPM) is proposed to control this kind of spatial batch process.The GPM is utilized as the internal model to predict the thicknesses of thin films on all spatial-distributed wafers using the limited data.Unlike the conventional model based design,the uncertainties of predictions provided by GPM are taken into consideration to guide the optimal design of manipulated variables so that the designing can be more prudent Besides,the GPM is also actively enhanced using as little data as possible based on the predictive uncertainties.The effectiveness of the proposed strategy is successfully demonstrated in an LPCVD process. 展开更多
关键词 Batchwise LPCVD Transport processes Spatial distribution gaussian process model Optimal design
下载PDF
Optimal Recovery of Functions on the Sphere on a Sobolev Spaces with a Gaussian Measure in the Average Case Setting
2
作者 Zexia Huang Heping Wang 《Analysis in Theory and Applications》 CSCD 2015年第2期154-166,共13页
In this paper, we study optimal recovery (reconstruction) of functions on the sphere in the average case setting. We obtain the asymptotic orders of average sampling numbers of a Sobolev space on the sphere with a G... In this paper, we study optimal recovery (reconstruction) of functions on the sphere in the average case setting. We obtain the asymptotic orders of average sampling numbers of a Sobolev space on the sphere with a Gaussian measure in the Lq (S^d-1) metric for 1 ≤ q ≤ ∞, and show that some worst-case asymptotically optimal algorithms are also asymptotically optimal in the average case setting in the Lq (S^d-1) metric for 1 ≤ q ≤ ∞. 展开更多
关键词 Optimal recovery on the sphere average sampling numbers optimal algorithm gaussian measure.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部