期刊文献+
共找到2,376篇文章
< 1 2 119 >
每页显示 20 50 100
Reliable calculations of nuclear binding energies by the Gaussian process of machine learning
1
作者 Zi-Yi Yuan Dong Bai +1 位作者 Zhen Wang Zhong-Zhou Ren 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第6期130-144,共15页
Reliable calculations of nuclear binding energies are crucial for advancing the research of nuclear physics. Machine learning provides an innovative approach to exploring complex physical problems. In this study, the ... Reliable calculations of nuclear binding energies are crucial for advancing the research of nuclear physics. Machine learning provides an innovative approach to exploring complex physical problems. In this study, the nuclear binding energies are modeled directly using a machine-learning method called the Gaussian process. First, the binding energies for 2238 nuclei with Z > 20 and N > 20 are calculated using the Gaussian process in a physically motivated feature space, yielding an average deviation of 0.046 MeV and a standard deviation of 0.066 MeV. The results show the good learning ability of the Gaussian process in the studies of binding energies. Then, the predictive power of the Gaussian process is studied by calculating the binding energies for 108 nuclei newly included in AME2020. The theoretical results are in good agreement with the experimental data, reflecting the good predictive power of the Gaussian process. Moreover, the α-decay energies for 1169 nuclei with 50 ≤ Z ≤ 110 are derived from the theoretical binding energies calculated using the Gaussian process. The average deviation and the standard deviation are, respectively, 0.047 MeV and 0.070 MeV. Noticeably, the calculated α-decay energies for the two new isotopes ^ (204 )Ac(Huang et al. Phys Lett B 834, 137484(2022)) and ^ (207) Th(Yang et al. Phys Rev C 105, L051302(2022)) agree well with the latest experimental data. These results demonstrate that the Gaussian process is reliable for the calculations of nuclear binding energies. Finally, the α-decay properties of some unknown actinide nuclei are predicted using the Gaussian process. The predicted results can be useful guides for future research on binding energies and α-decay properties. 展开更多
关键词 Nuclear binding energies DECAY Machine learning gaussian process
下载PDF
Operational optimization of copper flotation process based on the weighted Gaussian process regression and index-oriented adaptive differential evolution algorithm
2
作者 Zhiqiang Wang Dakuo He Haotian Nie 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期167-179,共13页
Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation indust... Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation industrial processes.This paper addresses the fluctuation problem of CCG through an operational optimization method.Firstly,a density-based affinity propagationalgorithm is proposed so that more ideal working condition categories can be obtained for the complex raw ore properties.Next,a Bayesian network(BN)is applied to explore the relationship between the operational variables and the CCG.Based on the analysis results of BN,a weighted Gaussian process regression model is constructed to predict the CCG that a higher prediction accuracy can be obtained.To ensure the predicted CCG is close to the set value with a smaller magnitude of the operation adjustments and a smaller uncertainty of the prediction results,an index-oriented adaptive differential evolution(IOADE)algorithm is proposed,and the convergence performance of IOADE is superior to the traditional differential evolution and adaptive differential evolution methods.Finally,the effectiveness and feasibility of the proposed methods are verified by the experiments on a copper flotation industrial process. 展开更多
关键词 Weighted gaussian process regression Index-oriented adaptive differential evolution Operational optimization Copper flotation process
下载PDF
Comparison of Results of Different GPS Post-processing Software
3
作者 Dapeng SHI 《Asian Agricultural Research》 2024年第6期33-35,共3页
In order to obtain high-precision GPS control point results and provide high-precision known points for various projects,this study uses a variety of mature GPS post-processing software to process the observation data... In order to obtain high-precision GPS control point results and provide high-precision known points for various projects,this study uses a variety of mature GPS post-processing software to process the observation data of the GPS control network of Guanyinge Reservoir,and compares the results obtained by several kinds of software.According to the test results,the reasons for the accuracy differences between different software are analyzed,and the optimal results are obtained in the analysis and comparison.The purpose of this paper is to provide useful reference for GPS software users to process data. 展开更多
关键词 gpS Data processing POINT POSITION PRECISION
下载PDF
Optimization of Generator Based on Gaussian Process Regression Model with Conditional Likelihood Lower Bound Search
4
作者 Xiao Liu Pingting Lin +2 位作者 Fan Bu Shaoling Zhuang Shoudao Huang 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第1期32-42,共11页
The noise that comes from finite element simulation often causes the model to fall into the local optimal solution and over fitting during optimization of generator.Thus,this paper proposes a Gaussian Process Regressi... The noise that comes from finite element simulation often causes the model to fall into the local optimal solution and over fitting during optimization of generator.Thus,this paper proposes a Gaussian Process Regression(GPR)model based on Conditional Likelihood Lower Bound Search(CLLBS)to optimize the design of the generator,which can filter the noise in the data and search for global optimization by combining the Conditional Likelihood Lower Bound Search method.Taking the efficiency optimization of 15 kW Permanent Magnet Synchronous Motor as an example.Firstly,this method uses the elementary effect analysis to choose the sensitive variables,combining the evolutionary algorithm to design the super Latin cube sampling plan;Then the generator-converter system is simulated by establishing a co-simulation platform to obtain data.A Gaussian process regression model combing the method of the conditional likelihood lower bound search is established,which combined the chi-square test to optimize the accuracy of the model globally.Secondly,after the model reaches the accuracy,the Pareto frontier is obtained through the NSGA-II algorithm by considering the maximum output torque as a constraint.Last,the constrained optimization is transformed into an unconstrained optimizing problem by introducing maximum constrained improvement expectation(CEI)optimization method based on the re-interpolation model,which cross-validated the optimization results of the Gaussian process regression model.The above method increase the efficiency of generator by 0.76%and 0.5%respectively;And this method can be used for rapid modeling and multi-objective optimization of generator systems. 展开更多
关键词 Generator optimization gaussian process Regression(gpR) Conditional Likelihood Lower Bound Search(CLLBS) Constraint improvement expectation(CEI) Finite element calculation
下载PDF
State of health prediction for lithium-ion batteries based on ensemble Gaussian process regression
5
作者 HUI Zhouli WANG Ruijie +1 位作者 FENG Nana YANG Ming 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第3期397-407,共11页
The performance of lithium-ion batteries(LIBs)gradually declines over time,making it critical to predict the battery’s state of health(SOH)in real-time.This paper presents a model that incorporates health indicators ... The performance of lithium-ion batteries(LIBs)gradually declines over time,making it critical to predict the battery’s state of health(SOH)in real-time.This paper presents a model that incorporates health indicators and ensemble Gaussian process regression(EGPR)to predict the SOH of LIBs.Firstly,the degradation process of an LIB is analyzed through indirect health indicators(HIs)derived from voltage and temperature during discharge.Next,the parameters in the EGPR model are optimized using the gannet optimization algorithm(GOA),and the EGPR is employed to estimate the SOH of LIBs.Finally,the proposed model is tested under various experimental scenarios and compared with other machine learning models.The effectiveness of EGPR model is demonstrated using the National Aeronautics and Space Administration(NASA)LIB.The root mean square error(RMSE)is maintained within 0.20%,and the mean absolute error(MAE)is below 0.16%,illustrating the proposed approach’s excellent predictive accuracy and wide applicability. 展开更多
关键词 lithium-ion batteryies(LIBs) ensemble gaussian process regression(EgpR) state of health(SOH) health indicators(HIs) gannet optimization algorithm(GOA)
下载PDF
利用SE-GPR模型对甲醇/柴油混合燃料柴油机性能的预测
6
作者 范金宇 才正 +3 位作者 黄朝霞 杨晨曦 李品芳 黄加亮 《集美大学学报(自然科学版)》 CAS 2024年第2期152-161,共10页
为了对柴油机的经济性和排放参数进行高效、准确的预测,根据4190型船用柴油机实验数据与边界参数,建立AVL-BOOST甲醇/柴油混合燃料柴油机仿真模型;利用模型进行仿真实验,并建立甲醇掺混比、废气再循环(exhaust gas recirculation,EGR)... 为了对柴油机的经济性和排放参数进行高效、准确的预测,根据4190型船用柴油机实验数据与边界参数,建立AVL-BOOST甲醇/柴油混合燃料柴油机仿真模型;利用模型进行仿真实验,并建立甲醇掺混比、废气再循环(exhaust gas recirculation,EGR)率、喷油提前角和进气压力4个控制参数对有效油耗率和NO x排放预测数据集;利用该数据集对5种不同核函数的高斯过程回归(Gaussian process regression,GPR)模型进行训练;最后将最优的平方指数高斯过程回归(squared exponential-Gaussian process regression,SE-GPR)模型、AVL-BOOST仿真数据和柴油机实验数据进行对比。结果表明:在数据量为180组时,SE-GPR模型对有效油耗率和NO x排放均取得拟合关联度99%以上,均方根误差(root mean square error,RMSE)分别为1.859,0.3445,平均绝对误差(mean absolute error,MAE)分别为0.954,0.2489;并且,相较于AVL-BOOST仿真实验,SE-GPR模型对实验数据具有更好的拟合性。 展开更多
关键词 船用柴油机 甲醇 高斯过程回归 平方指数核函数 性能预测
下载PDF
Fast Remaining Capacity Estimation for Lithium-ion Batteries Based on Short-time Pulse Test and Gaussian Process Regression 被引量:1
7
作者 Aihua Ran Ming Cheng +7 位作者 Shuxiao Chen Zheng Liang Zihao Zhou Guangmin Zhou Feiyu Kang Xuan Zhang Baohua Li Guodan Wei 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期238-246,共9页
It remains challenging to effectively estimate the remaining capacity of the secondary lithium-ion batteries that have been widely adopted for consumer electronics,energy storage,and electric vehicles.Herein,by integr... It remains challenging to effectively estimate the remaining capacity of the secondary lithium-ion batteries that have been widely adopted for consumer electronics,energy storage,and electric vehicles.Herein,by integrating regular real-time current short pulse tests with data-driven Gaussian process regression algorithm,an efficient battery estimation has been successfully developed and validated for batteries with capacity ranging from 100%of the state of health(SOH)to below 50%,reaching an average accuracy as high as 95%.Interestingly,the proposed pulse test strategy for battery capacity measurement could reduce test time by more than 80%compared with regular long charge/discharge tests.The short-term features of the current pulse test were selected for an optimal training process.Data at different voltage stages and state of charge(SOC)are collected and explored to find the most suitable estimation model.In particular,we explore the validity of five different machine-learning methods for estimating capacity driven by pulse features,whereas Gaussian process regression with Matern kernel performs the best,providing guidance for future exploration.The new strategy of combining short pulse tests with machine-learning algorithms could further open window for efficiently forecasting lithium-ion battery remaining capacity. 展开更多
关键词 capacity estimation data-driven method gaussian process regression lithium-ion battery pulse tests
下载PDF
Gaussian process hydrodynamics
8
作者 H.OWHADI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第7期1175-1198,共24页
We present a Gaussian process(GP)approach,called Gaussian process hydrodynamics(GPH)for approximating the solution to the Euler and Navier-Stokes(NS)equations.Similar to smoothed particle hydrodynamics(SPH),GPH is a L... We present a Gaussian process(GP)approach,called Gaussian process hydrodynamics(GPH)for approximating the solution to the Euler and Navier-Stokes(NS)equations.Similar to smoothed particle hydrodynamics(SPH),GPH is a Lagrangian particle-based approach that involves the tracking of a finite number of particles transported by a flow.However,these particles do not represent mollified particles of matter but carry discrete/partial information about the continuous flow.Closure is achieved by placing a divergence-free GP priorξon the velocity field and conditioning it on the vorticity at the particle locations.Known physics(e.g.,the Richardson cascade and velocityincrement power laws)is incorporated into the GP prior by using physics-informed additive kernels.This is equivalent to expressingξas a sum of independent GPsξl,which we call modes,acting at different scales(each modeξlself-activates to represent the formation of eddies at the corresponding scales).This approach enables a quantitative analysis of the Richardson cascade through the analysis of the activation of these modes,and enables us to analyze coarse-grain turbulence statistically rather than deterministically.Because GPH is formulated by using the vorticity equations,it does not require solving a pressure equation.By enforcing incompressibility and fluid-structure boundary conditions through the selection of a kernel,GPH requires significantly fewer particles than SPH.Because GPH has a natural probabilistic interpretation,the numerical results come with uncertainty estimates,enabling their incorporation into an uncertainty quantification(UQ)pipeline and adding/removing particles(quanta of information)in an adapted manner.The proposed approach is suitable for analysis because it inherits the complexity of state-of-the-art solvers for dense kernel matrices and results in a natural definition of turbulence as information loss.Numerical experiments support the importance of selecting physics-informed kernels and illustrate the major impact of such kernels on the accuracy and stability.Because the proposed approach uses a Bayesian interpretation,it naturally enables data assimilation and predictions and estimations by mixing simulation data and experimental data. 展开更多
关键词 I Navier-Stokes(NS)equation EULER LAGRANGIAN VORTICITY gaussian pro-cess(gp) physics-informed kernel
下载PDF
基于SQP-GPMP2算法的移动机器人路径规划
9
作者 郭希文 付世沫 +2 位作者 魏媛媛 常青 王耀力 《电光与控制》 CSCD 北大核心 2024年第9期104-110,共7页
针对高斯过程路径规划算法(GPMP2)处理非线性不等式约束能力有限、在复杂障碍物地图中易陷入局部极小值,进而产生碰撞的问题,结合序列二次规划(SQP)算法,提出了改进的SQP-GPMP2算法。首先,该算法从概率的角度将运动规划视为轨迹优化,得... 针对高斯过程路径规划算法(GPMP2)处理非线性不等式约束能力有限、在复杂障碍物地图中易陷入局部极小值,进而产生碰撞的问题,结合序列二次规划(SQP)算法,提出了改进的SQP-GPMP2算法。首先,该算法从概率的角度将运动规划视为轨迹优化,得到初始轨迹状态;其次,引入碰撞代价函数,用来表示机器人和障碍物的碰撞代价关系;最后,使用SQP算法对轨迹进行迭代修正,保证轨迹的无碰撞和运动学合理性。仿真实验结果显示,相比GPMP2等算法,所提算法在不同尺寸迷宫上的规划成功率至少提高20个百分点,证明该算法在处理复杂约束能力和保证路径规划效率上具有优越性。 展开更多
关键词 移动机器人 路径规划 高斯过程 序列二次规划
下载PDF
Multi-output Gaussian Process Regression Model with Combined Kernel Function for Polyester Esterification Processes
10
作者 王恒骞 耿君先 陈磊 《Journal of Donghua University(English Edition)》 CAS 2023年第1期27-33,共7页
In polyester fiber industrial processes,the prediction of key performance indicators is vital for product quality.The esterification process is an indispensable step in the polyester polymerization process.It has the ... In polyester fiber industrial processes,the prediction of key performance indicators is vital for product quality.The esterification process is an indispensable step in the polyester polymerization process.It has the characteristics of strong coupling,nonlinearity and complex mechanism.To solve these problems,we put forward a multi-output Gaussian process regression(MGPR)model based on the combined kernel function for the polyester esterification process.Since the seasonal and trend decomposition using loess(STL)can extract the periodic and trend characteristics of time series,a combined kernel function based on the STL and the kernel function analysis is constructed for the MGPR.The effectiveness of the proposed model is verified by the actual polyester esterification process data collected from fiber production. 展开更多
关键词 seasonal and trend decomposition using loess(STL) multi-output gaussian process regression combined kernel function polyester esterification process
下载PDF
基于Tri-training GPR的半监督软测量建模方法
11
作者 马君霞 李林涛 熊伟丽 《化工学报》 EI CSCD 北大核心 2024年第7期2613-2623,共11页
集成学习因通过构建并结合多个学习器,常获得比单一学习器显著优越的泛化能力。但是在标记数据比例较少时,建立高性能的集成学习软测量模型依然是个挑战。针对这一个问题,提出一种基于半监督集成学习的软测量建模方法——Tri-training ... 集成学习因通过构建并结合多个学习器,常获得比单一学习器显著优越的泛化能力。但是在标记数据比例较少时,建立高性能的集成学习软测量模型依然是个挑战。针对这一个问题,提出一种基于半监督集成学习的软测量建模方法——Tri-training GPR模型。该建模策略充分发挥了半监督学习的优势,减轻建模过程对标记样本数据的需求,在低数据标签率下,仍能通过对无标记数据进行筛选从而扩充可用于建模的有标记样本数据集,并进一步结合半监督学习和集成学习的优势,提出一种新的选择高置信度样本的思路。将所提方法应用于青霉素发酵和脱丁烷塔过程,建立青霉素和丁烷浓度预测软测量模型,与传统的建模方法相比获得了更优的预测结果,验证了模型的有效性。 展开更多
关键词 软测量 集成学习 半监督学习 TRI-TRAINING 高斯过程回归 过程控制 动力学模型 化学过程
下载PDF
面向光纤光栅传感线性拟合度的PSO-GPR算法
12
作者 钱敏 桂林 +2 位作者 连枭轩 丁美琪 王炼栋 《光通信研究》 北大核心 2024年第4期62-67,共6页
【目的】为了提高光纤布拉格光栅(FBG)传感系统中反射光谱中心波长与外部环境变量之间的线性拟合度,文章提出了使用粒子群优化的高斯过程回归模型应用于FBG应力传感领域。【方法】针对FBG的反射光谱特性,文章研究了对于FBG传感系统在光... 【目的】为了提高光纤布拉格光栅(FBG)传感系统中反射光谱中心波长与外部环境变量之间的线性拟合度,文章提出了使用粒子群优化的高斯过程回归模型应用于FBG应力传感领域。【方法】针对FBG的反射光谱特性,文章研究了对于FBG传感系统在光谱拟合中线性拟合度的影响,通过粒子群算法去寻找高斯过程回归模型中的最优超参数以提升对反射光谱中心波长的预测性能。文章搭建了FBG应力传感实验平台,将FBG铺设在强度梁上,在等强度梁一端施加不同重量的砝码对FBG产生轴向应变,通过光谱仪采集反射光谱数据并使用文章所提模型进行线性拟合分析处理,将未优化的高斯过程回归模型、最大值法、高斯拟合法和质心法得到的结果作为对照组。【结果】结果表明,在掺铒光纤放大器输出功率为10 dBm、传输光纤距离为50 m、光谱仪采样点个数为501的条件下,反射光谱中心波长与砝码重量之间的线性拟合度均优于对照组,文章所提模型的线性拟合度最高能达到0.9519,相较于对照组均有所提升。在501、251、167和126点的光谱采样点条件下,文章所提模型能将系统的线性拟合度提升到0.9900,相较于最大值法最大提升了0.2587。【结论】分析结果表明,使用粒子群优化的高斯过程回归模型能够有效提高FBG应力传感系统的线性拟合度。 展开更多
关键词 光纤布拉格光栅 高斯过程回归 粒子群算法 线性拟合度
下载PDF
基于一阶ECM-IGPR的锂离子电池SOC及SOH联合估计框架
13
作者 李谦 姜帆 +4 位作者 韩乔妮 张吉昂 程泽 苏展 马伯杨 《太阳能学报》 EI CAS CSCD 北大核心 2024年第5期240-250,共11页
为解决锂电池荷电状态与健康状态互相耦合问题,提出一种基于等效电路模型-改进高斯过程回归的锂离子电池荷电状态(SOC)-健康状态(SOH)的联合估计框架。该框架通过提取容量增量曲线中的健康特征,进行主成分分析,然后建立电池老化的改进... 为解决锂电池荷电状态与健康状态互相耦合问题,提出一种基于等效电路模型-改进高斯过程回归的锂离子电池荷电状态(SOC)-健康状态(SOH)的联合估计框架。该框架通过提取容量增量曲线中的健康特征,进行主成分分析,然后建立电池老化的改进高斯过程回归模型进行SOH预测。在此基础上,建立锂电池一阶状态空间模型,并结合改进粒子滤波算法对后一周期的SOC更新,实现SOC及SOH的联合长期估计。牛津数据集中的8个电池被用来验证该框架的准确性和适应性,取得了较好的估计结果。 展开更多
关键词 锂离子电池 容量增量 联合状态估计 等效电路模型 粒子滤波算法 高斯过程回归
下载PDF
基于GPR模型的用户量预测优化方法
14
作者 刘学浩 刘文学 +3 位作者 杨超三 祝文晶 宋玉 李金海 《系统工程与电子技术》 EI CSCD 北大核心 2024年第8期2721-2729,共9页
高斯过程回归(Gaussian process regression,GPR)是一种基于高斯过程的非参数化贝叶斯回归方法,其可以灵活适应不同类型数据,用于建模和预测数据之间的复杂关系,具有拟合能力强、泛化能力好等特点。针对海量用户场景下用户量实时预测问... 高斯过程回归(Gaussian process regression,GPR)是一种基于高斯过程的非参数化贝叶斯回归方法,其可以灵活适应不同类型数据,用于建模和预测数据之间的复杂关系,具有拟合能力强、泛化能力好等特点。针对海量用户场景下用户量实时预测问题,提出一种基于GPR的用户量预测优化方法。在滑动窗口方法处理数据的基础上,选择合适的核函数,基于k折交叉验证得到最佳超参数组合以实现GPR模型训练,完成在线用户量的实时预测并进行性能评估。实验结果表明,相比于采用训练集中输出数据方差的50%作为信号噪声估计量的传统方案,所提方法具有较高的预测准确度,并且在测试集均方根误差(root mean square,RMS)、平均绝对误差(mean absolute error,MAE)、平均偏差(mean bias error,MBE)和决定系数R 2这4个评估指标方面均有提升,其中MBE至少提升了43.3%。 展开更多
关键词 高斯过程回归 用户量预测 滑动窗口 交叉验证 超参数优化
下载PDF
基于ECM和SGPR的高鲁棒性锂离子电池健康状态估计方法 被引量:1
15
作者 崔显 陈自强 《上海交通大学学报》 EI CAS CSCD 北大核心 2024年第5期747-759,共13页
锂离子电池健康状态(SOH)的准确估计对于保障电池系统安全运行具有重要意义.针对传统SOH估计方法在可变工况下失效的问题,提出了一种基于等效电路模型和稀疏高斯过程回归的锂离子电池SOH在线估计方法.通过两个在线滤波器,在恒流充电过... 锂离子电池健康状态(SOH)的准确估计对于保障电池系统安全运行具有重要意义.针对传统SOH估计方法在可变工况下失效的问题,提出了一种基于等效电路模型和稀疏高斯过程回归的锂离子电池SOH在线估计方法.通过两个在线滤波器,在恒流充电过程中动态地辨识了锂离子电池等效电路模型的各项参数,构建了工况不敏感的健康因子,结合稀疏高斯过程回归实现SOH的间接估计.该方法在多种工况下使用统一的信号处理方法和特征映射模型,兼具鲁棒性强和冗余度低的优点.实验结果表明,该方法在多种工况下的平均绝对误差不超过0.94%,均方根误差不超过1.12%,与现有方法相比,该方法在综合性能上具有显著优势. 展开更多
关键词 锂离子电池 健康状态 健康因子 粒子滤波 稀疏高斯过程回归
下载PDF
工程测绘中GPS测量技术运用研究 被引量:1
16
作者 杨宁宁 《智能建筑与智慧城市》 2024年第1期42-44,共3页
基于工程测绘,文章着重分析GPS测量技术的运用,从GPS测量技术的运用流程、运用技术的分析中,加强对该项技术的应用介绍。
关键词 工程测绘 gpS技术 应用流程
下载PDF
基于SSA-GPR模型的风电机组运行状态监测
17
作者 张杰 任康 +3 位作者 马天 王伟璐 邢作霞 韩广明 《电器与能效管理技术》 2024年第4期65-73,89,共10页
为提高风电机组发电效率,增加经济收益,实现风电机组运行状态的在线监测,提出一种基于麻雀搜索算法优化高斯过程回归(SSA-GPR)模型的风电机组状态监测新方法。首先对数据采集与监视控制(SCADA)系统采集到的数据进行预处理分析,利用相关... 为提高风电机组发电效率,增加经济收益,实现风电机组运行状态的在线监测,提出一种基于麻雀搜索算法优化高斯过程回归(SSA-GPR)模型的风电机组状态监测新方法。首先对数据采集与监视控制(SCADA)系统采集到的数据进行预处理分析,利用相关性分析完成模型的输入量选择;然后利用机组正常运行状态下的参数建立常态回归模型,实时计算重构误差,通过实时监测功率残差值是否超过动态故障阈值来判断机组状态。实例结果表明,所提方法的预测误差更小,并可以提前120 min实现机组异常运行状态预警。 展开更多
关键词 SCADA数据 麻雀搜索算法 高斯过程回归 状态监测 风电机组
下载PDF
基于GP-PS的分布式加工与装配多级车间调度规则自动设计方法
18
作者 邹杰 刘建军 曾创锋 《机电工程》 CAS 北大核心 2024年第9期1628-1640,共13页
分布式加工与装配多级制造系统由多个用于加工零件的作业车间和用于装配产品的一般流水车间组成。动态到达的订单涉及多层产品结构,零件需齐备之后才可装配。该类多级车间的管控涉及订单分配、加工和装配任务调度联合决策问题,其关键在... 分布式加工与装配多级制造系统由多个用于加工零件的作业车间和用于装配产品的一般流水车间组成。动态到达的订单涉及多层产品结构,零件需齐备之后才可装配。该类多级车间的管控涉及订单分配、加工和装配任务调度联合决策问题,其关键在于实现两级生产的精准化协同目的。针对分布式加工与装配多级车间调度问题,提出了一种基于GP-PS的分布式加工与装配多级车间调度规则自动设计方法。首先,以最小化订单拖期率为目标,建立了订单分配、加工和装配任务调度联合决策的数学模型;然后,提出了一种改进型遗传规划算法,用以集成进化多级调度规则,设计了一类种群优化机制来避免算法陷入局部收敛,同时嵌入了并行仿真技术,有效减少了训练时间;最后,进行了仿真实验,对改进型遗传算法的性能进行了验证。研究结果表明:人工规则组、标准遗传规划算法及改进型遗传算法得到的订单拖期率分别为6.44%、5.65%、2.67%。基于并行仿真优化的改进型GP算法较数十个优选的人工规则组及标准GP算法生成的最优规则组,能取得更明显的综合性能优势。使用该算法针对DPAMW调度问题自动设计一体化调度的多级规则是可行的、有效的。 展开更多
关键词 多级制造系统 分布式制造系统 分布式加工与装配多级车间 并行仿真优化的遗传规划算法 调度规则 遗传规划 仿真优化
下载PDF
基于GPS差分定位的变电站电磁干扰位置识别
19
作者 柏东辉 吴建杰 《电子设计工程》 2024年第20期40-43,49,共5页
由于变电站中各种设备的增加,会导致大量的电磁干扰产生,严重影响变电站的正常运行。为解决这一问题,设计一种基于全球定位系统(Global Positioning System,GPS)差分定位技术的变电站电磁干扰位置识别方法。设计电磁干扰采集平台,实现... 由于变电站中各种设备的增加,会导致大量的电磁干扰产生,严重影响变电站的正常运行。为解决这一问题,设计一种基于全球定位系统(Global Positioning System,GPS)差分定位技术的变电站电磁干扰位置识别方法。设计电磁干扰采集平台,实现变电站电磁干扰信号的采集,并进行消噪处理与时域滤波处理。通过GPS差分定位技术实现变电站电磁干扰信号的位置识别。测试结果表明,该方法的单一干扰源平均定位误差低于20 cm,能够实现多干扰源的定位,同时对于较远距离的多干扰源有着较低的定位误差。 展开更多
关键词 gpS差分定位 一体化接收单元 电磁干扰 时域滤波处理 位置识别
下载PDF
基于数据预处理和VMD-LSTM-GPR的锂离子电池剩余寿命预测
20
作者 李英顺 阚宏达 +2 位作者 郭占男 王德彪 王铖 《电工技术学报》 EI CSCD 北大核心 2024年第10期3244-3258,共15页
锂离子电池的剩余使用寿命(RUL)是健康管理中重要参数,其准确评估对于保证电池设备的安全稳定运行非常重要。该文提出一种数据预处理联合变分模态分解(VMD)、长短期记忆网络(LSTM)和高斯回归过程(GPR)的预测框架。首先选取充放电循环过... 锂离子电池的剩余使用寿命(RUL)是健康管理中重要参数,其准确评估对于保证电池设备的安全稳定运行非常重要。该文提出一种数据预处理联合变分模态分解(VMD)、长短期记忆网络(LSTM)和高斯回归过程(GPR)的预测框架。首先选取充放电循环过程中的信息作为间接健康因子(HI),并通过核主元分析方法(KPCA)实现间接HI的特征提取,完成数据预处理;其次通过VMD-LSTM方法实现健康因子的分解、预测和重构,并将重构得到的数据应用于RUL预测的GPR模型,完成预测模型搭建;最后以NASA锂电池数据集作为算法测试数据,结果表明,所提取的健康因子能够准确跟踪锂电池的退化过程;所提预测方法能够准确地估计电池的剩余寿命,同时具有较高的可靠性和稳定性。 展开更多
关键词 锂离子电池 剩余寿命 健康因子 变分模态分解 高斯回归过程 长短期记忆
下载PDF
上一页 1 2 119 下一页 到第
使用帮助 返回顶部