期刊文献+
共找到36篇文章
< 1 2 >
每页显示 20 50 100
基于PSO-SA算法的源项反演方法研究
1
作者 刘璐 张绍阳 +1 位作者 冉思雨 沈柳彤 《现代电子技术》 北大核心 2024年第1期100-104,共5页
针对大气污染事故突发时,事故发生点无法确定或人员不能接近的情况,研究了基于环境监测数据源项反演以获取事故源项数据的技术,设计实现了一种基于粒子群-模拟退火源项反演方法。采用自适应方法调整惯性权重系数,与高斯烟羽扩散模型结合... 针对大气污染事故突发时,事故发生点无法确定或人员不能接近的情况,研究了基于环境监测数据源项反演以获取事故源项数据的技术,设计实现了一种基于粒子群-模拟退火源项反演方法。采用自适应方法调整惯性权重系数,与高斯烟羽扩散模型结合,对事故源项数据进行反演。实验结果显示:在所选监测点监测数据的反演实验中,基于粒子群-模拟退火算法(PSO-SA)结合了两种算法的优势,能够获得与期望值较为符合的反演结果。进一步分析了监测点数据误差及监测点数量对反演结果的影响,并将文中方法与粒子群算法(PSO)进行对比,同等条件下,较粒子群算法精度提高了8%,能够快速实现对大气污染源强和位置的准确估计。 展开更多
关键词 源项反演 大气污染 粒子群算法 模拟退火算法 高斯烟羽 自适应惯性权重
下载PDF
联合MRGP和PSO的工业机器人驱动器可靠性分析
2
作者 曾颖 李彦锋 +2 位作者 王弘毅 钱华明 黄洪钟 《系统工程与电子技术》 EI CSCD 北大核心 2023年第8期2643-2650,共8页
作为工业机器人的核心部件之一,驱动器失效频发,失效模式多样且具有一定相关性,给工业机器人的正常工作带来了严峻挑战。同时,工业机器人驱动器各失效模式的极限状态方程复杂,甚至一些为隐函数,这也造成了工业机器人驱动器可靠性建模的... 作为工业机器人的核心部件之一,驱动器失效频发,失效模式多样且具有一定相关性,给工业机器人的正常工作带来了严峻挑战。同时,工业机器人驱动器各失效模式的极限状态方程复杂,甚至一些为隐函数,这也造成了工业机器人驱动器可靠性建模的困难。为此,本文引入多维响应高斯过程(multiple response Gaussian process,MRGP)模型来刻画驱动器内各失效模式间的相关性及其极限状态方程,同时引入粒子群优化(particle swarm optimization,PSO)算法优化MRGP模型中的超参数,结合主动学习策略,对MRGP模型进行更新迭代,直至其满足一定精度条件,形成基于MRGP-PSO的工业机器人驱动器可靠性分析方法。最后开展相关算例分析,验证了所提方法的有效性。 展开更多
关键词 工业机器人 驱动器 多维响应高斯过程 粒子群优化算法 可靠性分析
下载PDF
基于IPSO-FHMM的非侵入式负荷分解 被引量:1
3
作者 李岢淳 李兵 《计算机系统应用》 2023年第8期214-220,共7页
非侵入式负荷分解是智能用电系统的一个重要环节,可深入分析用户的用电信息,对负荷预测、需求侧管理及电网安全有重要意义.本文提出了一种基于改进粒子群优化因子隐马尔可夫模型(IPSO-FHMM)的非侵入式负荷分解方法.利用高斯混合模型(GMM... 非侵入式负荷分解是智能用电系统的一个重要环节,可深入分析用户的用电信息,对负荷预测、需求侧管理及电网安全有重要意义.本文提出了一种基于改进粒子群优化因子隐马尔可夫模型(IPSO-FHMM)的非侵入式负荷分解方法.利用高斯混合模型(GMM)对单负荷进行状态聚类,总负载模型由因子隐马尔可夫模型表示.针对Baum-Welch算法容易收敛于局部极值的问题,将线性递减权重的粒子群优化算法引入到FHMM的参数训练中.使用AMPds2数据集进行仿真实验,结果表明,该模型可以有效地提高分解精度. 展开更多
关键词 非侵入式负荷分解 因子隐马尔科夫模型 鲍姆-韦尔奇算法 粒子群算法 高斯混合模型
下载PDF
Multi-Source Underwater DOA Estimation Using PSO-BP Neural Network Based on High-Order Cumulant Optimization
4
作者 Haihua Chen Jingyao Zhang +3 位作者 Bin Jiang Xuerong Cui Rongrong Zhou Yucheng Zhang 《China Communications》 SCIE CSCD 2023年第12期212-229,共18页
Due to the complex and changeable environment under water,the performance of traditional DOA estimation algorithms based on mathematical model,such as MUSIC,ESPRIT,etc.,degrades greatly or even some mistakes can be ma... Due to the complex and changeable environment under water,the performance of traditional DOA estimation algorithms based on mathematical model,such as MUSIC,ESPRIT,etc.,degrades greatly or even some mistakes can be made because of the mismatch between algorithm model and actual environment model.In addition,the neural network has the ability of generalization and mapping,it can consider the noise,transmission channel inconsistency and other factors of the objective environment.Therefore,this paper utilizes Back Propagation(BP)neural network as the basic framework of underwater DOA estimation.Furthermore,in order to improve the performance of DOA estimation of BP neural network,the following three improvements are proposed.(1)Aiming at the problem that the weight and threshold of traditional BP neural network converge slowly and easily fall into the local optimal value in the iterative process,PSO-BP-NN based on optimized particle swarm optimization(PSO)algorithm is proposed.(2)The Higher-order cumulant of the received signal is utilized to establish the training model.(3)A BP neural network training method for arbitrary number of sources is proposed.Finally,the effectiveness of the proposed algorithm is proved by comparing with the state-of-the-art algorithms and MUSIC algorithm. 展开更多
关键词 gaussian colored noise higher-order cumulant multiple sources particle swarm optimization(pso)algorithm pso-BP neural network
下载PDF
免疫粒子群算法在修正高斯模型下的源强反演
5
作者 万邦银 蒯念生 +2 位作者 何雄元 彭敏君 邓利民 《中国安全科学学报》 CAS CSCD 北大核心 2024年第7期132-138,共7页
为提高危险气体泄漏溯源定位的科学性和实效性,确定危险气体泄漏位置和强度是事故应急响应的关键。首先,根据质量守恒定律,分析、改进近似高斯分布的气体羽流扩散幅度,修正高斯烟羽模型;然后,基于免疫浓度筛选机制作为主策略的免疫算法(... 为提高危险气体泄漏溯源定位的科学性和实效性,确定危险气体泄漏位置和强度是事故应急响应的关键。首先,根据质量守恒定律,分析、改进近似高斯分布的气体羽流扩散幅度,修正高斯烟羽模型;然后,基于免疫浓度筛选机制作为主策略的免疫算法(IA),通过与粒子群算法(PSO)耦合,将混合免疫粒子群(PSO-IA)算法应用到源强反演中;最后,验证PSO-IA算法溯源定位效果。结果表明:与模式搜索法(PS)、遗传算法(GA)、PSO相比,修正高斯烟羽模型预测值误差均下降2%左右;混合PSO-IA算法相较PSO算法反演源强效果有明显提升,其算法定位误差为1.3 m,求解源强误差为0.8%,单次计算时间小于1 s,能实现快速、准确定位并估算源强度。 展开更多
关键词 免疫粒子群(pso-IA)算法 修正高斯烟羽模型 源强反演 危险气体泄漏 求解精度
下载PDF
基于混合PSO的高斯混合模型地形分类
6
作者 韩光 孙宁 +1 位作者 李晓飞 赵春霞 《计算机科学》 CSCD 北大核心 2014年第8期289-292,305,共5页
提出了一种基于改进的混合粒子群优化(particle swarm optimization,PSO)算法的高斯混合模型地形分类方法。高斯混合模型的求解通常是使用期望最大化算法(expectation maximization,EM),然而EM算法易陷入局部最优,收敛速度不稳定且对初... 提出了一种基于改进的混合粒子群优化(particle swarm optimization,PSO)算法的高斯混合模型地形分类方法。高斯混合模型的求解通常是使用期望最大化算法(expectation maximization,EM),然而EM算法易陷入局部最优,收敛速度不稳定且对初值敏感。因此引入混合PSO算法,并对其进行了一系列改进。实验结果表明:改进后的算法较其它优化算法提高了全局搜索能力和收敛速度,利用该算法求解高斯混合模型可以提高参数估计的精度,并且在户外场景图像的地形分类实验中所提出的地形分类方法也表现优良。 展开更多
关键词 混合 pso算法 高斯混合模型 EM算法 地形分类
下载PDF
车辆自适应巡航下的MPC方法的研究
7
作者 何臣修 郭世永 《机械设计与制造》 北大核心 2024年第2期30-35,共6页
提出了一种新颖的车辆自适应巡航控制(ACC)系统,该系统可以在保障跟车距离的同时,提升车辆的燃油经济性。基于模型预测控制(MPC)进行ACC的上层控制器搭建,并在此基础上采用高斯过程回归(GPR),网格搜索(GS)和自适应方法进行三轨参数调整... 提出了一种新颖的车辆自适应巡航控制(ACC)系统,该系统可以在保障跟车距离的同时,提升车辆的燃油经济性。基于模型预测控制(MPC)进行ACC的上层控制器搭建,并在此基础上采用高斯过程回归(GPR),网格搜索(GS)和自适应方法进行三轨参数调整,将控制域和预测域调整到最优状态。此外,为了减少计算量并提高稳定性,系统采用了粒子群优化算法(PSO)对系统进行升级改进。仿真结果表明,基于MPC控制的车辆自适应巡航控制系统可以在保证良好跟踪性能的同时降低燃油消耗率。 展开更多
关键词 自适应巡航控制(ACC) 模型预测控制(MPC) 高斯过程回归(GPR) 网格搜索(GS) 粒子群优化算法(pso)
下载PDF
基于CNN-LSTM-PSO的私有云故障检测
8
作者 曹炳尧 柏杰 侯佩儒 《计算机测量与控制》 2022年第8期76-82,110,共8页
有效对私有云系统进行故障检测对于保障IT系统稳定性及开展可靠性信息活动具有重要的实际意义;为此从私有云系统的历史趋势数据出发,将卷积网络(CNN)和长短期记忆(LSTM)循环神经网络结合,提出了基于粒子群优化算法(PSO)的CNN-LSTM-PSO... 有效对私有云系统进行故障检测对于保障IT系统稳定性及开展可靠性信息活动具有重要的实际意义;为此从私有云系统的历史趋势数据出发,将卷积网络(CNN)和长短期记忆(LSTM)循环神经网络结合,提出了基于粒子群优化算法(PSO)的CNN-LSTM-PSO的混合模型,实现对私有云的故障检测;采用X11算法等技术对数据进行预处理,使用CNN网络提取监控指标时序数据的相关特征信息,并通过训练LSTM网络参数建立CNN-LSTM预测模型,设计了PSO算法对预测模型进行参数选优,减小预测误差,并以高斯正态分布确定阈值范围,实现故障的精准检测;通过和传统单一预测模型以及现有的一些组合预测模型的对比,CNN-LSTM-PSO模型预测后结果的均方根误差、平均绝对误差和平均百分比误差都低于其余模型;实验结果验证了模型在预测效果上具备更高的精度和更快的预测速度,在私有云的故障检测中精确性和实时性都具有良好效果。 展开更多
关键词 LSTM 故障检测 X11分解法 CNN神经网络 pso算法 高斯正态分布 超参选优
下载PDF
结合文化算法的多种群协同变异PSO算法 被引量:4
9
作者 郭骥 彭鑫 马林华 《计算机工程与应用》 CSCD 北大核心 2011年第16期46-48,96,共4页
粒子群算法是一种新的基于群体智能的启发式全局优化算法,其概念简单,易于实现,而且具有良好的优化性能,目前已在许多领域得到应用。但在求解高维多峰函数寻优问题时,算法易陷入局部最优。结合文化算法和高斯变异的思想,提出一种基于文... 粒子群算法是一种新的基于群体智能的启发式全局优化算法,其概念简单,易于实现,而且具有良好的优化性能,目前已在许多领域得到应用。但在求解高维多峰函数寻优问题时,算法易陷入局部最优。结合文化算法和高斯变异的思想,提出一种基于文化算法和高斯变异的多群协同粒子群算法。该算法可以摆脱局部最优解对微粒的吸引,基于典型高维复杂函数的仿真结果表明,与多种群粒子群优化算法相比,该混合算法具有更好的优化性能。 展开更多
关键词 文化算法 高斯变异 粒子群算法
下载PDF
基于矩阵填充与改进PSO算法的多标准协同过滤 被引量:1
10
作者 叶莉 吴春明 +1 位作者 强保华 谢武 《计算机工程》 CAS CSCD 北大核心 2019年第12期176-181,200,共7页
在多标准协同过滤中,存在稀疏性处理方法单一以及传统粒子群优化(PSO)算法早熟、易陷入局部最优等问题。为此,基于矩阵填充及改进PSO算法,提出一种多标准协同过滤模型。采用矩阵填充方法对稀疏数据的缺失部分进行估算,以避免降维方法对... 在多标准协同过滤中,存在稀疏性处理方法单一以及传统粒子群优化(PSO)算法早熟、易陷入局部最优等问题。为此,基于矩阵填充及改进PSO算法,提出一种多标准协同过滤模型。采用矩阵填充方法对稀疏数据的缺失部分进行估算,以避免降维方法对原始数据信息造成损失,同时结合高斯算子快速收敛的优势以及遗传算子对生物进化模拟的有效性对PSO算法进行改进,聚合多标准评分生成TopN推荐列表。实验结果表明,与基于标准PSO算法以及基于遗传算子改进PSO算法的模型相比,该模型的评分预测准确度较优,能为个性化推荐提供有效的支持。 展开更多
关键词 多标准协同过滤 矩阵填充 改进粒子群优化算法 高斯算子 遗传算子
下载PDF
基于改进GMM算法的综合能源数据清洗研究 被引量:3
11
作者 杨柳林 胡贺骏 《电子测量技术》 北大核心 2023年第4期78-83,共6页
针对数据中台在采集数据过程中会产生异常值的问题,提出一种改进GMM算法的数据清洗方法。首先,将边缘计算引入来解决负载过大的问题;其次,为避免EM算法计算参数时陷入局部最优解,通过对GMM算法中的参数进行优化,改善了陷入局部最优解的... 针对数据中台在采集数据过程中会产生异常值的问题,提出一种改进GMM算法的数据清洗方法。首先,将边缘计算引入来解决负载过大的问题;其次,为避免EM算法计算参数时陷入局部最优解,通过对GMM算法中的参数进行优化,改善了陷入局部最优解的缺点。实验结果表明,一定的数据量下,改进的GMM算法在召回率、F值等指标上均优于GMM-EM算法。由此可知,改进算法在一定程度上提高了对异常数据的清洗效果,保证数据的可靠性。 展开更多
关键词 综合能源 数据中台 数据清洗 高斯混合模型 粒子群算法
下载PDF
融合改进Sine混沌映射的新型粒子群优化算法 被引量:6
12
作者 刘磊 姜博文 +3 位作者 周恒扬 浦晨玮 钱鹏飞 刘波 《西安交通大学学报》 EI CAS CSCD 北大核心 2023年第8期182-193,共12页
为了应对传统粒子群算法(PSO)存在的初始位置不均匀、易达到局部最优、搜索精度不高等问题,提出了一种基于改进Sine混沌映射的新型PSO算法。采用一种改进的Sine混沌映射技术代替传统的伪随机数方法生成初始粒子种群,以丰富种群的多样性... 为了应对传统粒子群算法(PSO)存在的初始位置不均匀、易达到局部最优、搜索精度不高等问题,提出了一种基于改进Sine混沌映射的新型PSO算法。采用一种改进的Sine混沌映射技术代替传统的伪随机数方法生成初始粒子种群,以丰富种群的多样性。在原始基本位置更新公式的基础上增加两种新的位置更新机制,并分别引入一个高斯变异算子,以实现算法勘探性能和开发性能之间的动态平衡,以及在迭代过程中使粒子有效跳出局部最优。在由7个单峰函数、6个多峰函数和10个固定维函数组成的基准测试函数和3个带约束经典工程优化设计问题上对所提出算法开展仿真实验,并与其他几种流行的PSO变体进行对比。仿真结果表明:与其他PSO变体相比,基于改进Sine混沌映射的新型PSO算法具有更快的收敛速度和更高的寻优精度,对于基准测试函数的寻优结果有20个排名第一,约为总测试函数的87%;该算法在压力容器和工字梁设计优化中,综合性能排在第一位,应可用于解决一些实际工程优化问题。 展开更多
关键词 粒子群算法 混沌映射 高斯变异 基准函数 工程问题
下载PDF
锚杆钻车钻臂定位控制方法 被引量:2
13
作者 李力恒 宋建成 +1 位作者 田慕琴 王相元 《工矿自动化》 CSCD 北大核心 2023年第3期77-84,123,共9页
目前常用代数法和几何法实现锚杆钻车钻臂定位控制,存在效率低、有无解或多解情况、通用性差等问题。采用粒子群优化(PSO)算法进行机械臂定位控制具有编程简单、搜索性能强、容错性好等优势,但易陷入局部最优解。目前基于改进PSO算法的... 目前常用代数法和几何法实现锚杆钻车钻臂定位控制,存在效率低、有无解或多解情况、通用性差等问题。采用粒子群优化(PSO)算法进行机械臂定位控制具有编程简单、搜索性能强、容错性好等优势,但易陷入局部最优解。目前基于改进PSO算法的机械臂定位控制整体寻优效率较低,寻优时间过长。针对上述问题,在精英反向粒子群优化(EOPSO)算法基础上,引入混沌初始化、交叉操作、变异操作和极值扰动,设计了混沌交叉精英变异反向粒子群优化(CEMOPSO)算法。采用标准测试函数对PSO算法、EOPSO算法、交叉精英反向粒子群优化(CEOPSO)算法、CEMOPSO算法进行测试,结果表明CEMOPSO算法的稳定性、精度、收敛速度最优。建立了锚杆钻车钻臂运动模型,采用CEMOPSO算法进行钻臂定位控制,并在Matlab软件中对控制性能进行仿真研究,结果表明:在相同的迭代次数和误差精度约束条件下,采用CEMOPSO算法时钻臂位置误差和姿态误差从迭代初期即具有极快的收敛速度,且位置误差和姿态误差均小于其他3种算法,误差曲线较平稳,最大位置误差为0.005 m,最大姿态误差为0.005 rad;设定位置误差为1 mm、姿态误差为0.01 rad时,CEMOPSO算法的平均迭代次数为343,位置误差为0.1 mm、姿态误差为0.001 rad时平均迭代次数为473,在相同的定位精度条件下,CEMOPSO算法的收敛速度和稳定性优于其他3种算法,满足工程应用要求,且求解精度越高,其优越性越突出。 展开更多
关键词 锚杆钻车 钻臂定位控制 精英反向粒子群优化算法 混沌初始化 交叉变异 高斯变异 极值扰动 柯西变异
下载PDF
基于改进粒子群算法的永磁同步电机参数辨识 被引量:3
14
作者 高森 王康 +1 位作者 姜宏昌 胡继胜 《微特电机》 2023年第11期65-70,共6页
针对一般粒子群算法辨识永磁同步电机参数由于其粒子在迭代后期易陷入局部最优而导致收敛速度慢和辨识精度差的缺陷,提出了一种基于混沌映射和高斯扰动改进的粒子群算法实现对永磁同步电机参数高精度辨识。利用混沌Sine映射构造了一种... 针对一般粒子群算法辨识永磁同步电机参数由于其粒子在迭代后期易陷入局部最优而导致收敛速度慢和辨识精度差的缺陷,提出了一种基于混沌映射和高斯扰动改进的粒子群算法实现对永磁同步电机参数高精度辨识。利用混沌Sine映射构造了一种非线性随机递减惯性权重,并在粒子群的“个体认知”部分引入高斯扰动策略。采用Sine函数构造学习因子。改进算法仅需采集电机定子电流、电压以及转速信号便可实现永磁同步电机多参数的准确辨识。对比仿真结果表明:基于混沌映射和高斯扰动改进的粒子群算法具有更快的收敛速度和更高的辨识精度,对于永磁同步电机控制性能改善具有重要意义。 展开更多
关键词 永磁同步电机 参数辨识 改进粒子群算法 混沌映射 高斯扰动
下载PDF
基于优化核函数带宽SVDD的机械振动预警模型 被引量:1
15
作者 刘晓金 陈文武 王庆锋 《机电工程》 CAS 北大核心 2023年第11期1641-1654,1672,共15页
基于高斯核函数的支持向量数据描述(SVDD),因其具有良好的异常检测性能,常被用于机械振动故障预警领域,但其性能的好坏受限于核函数带宽的取值是否适宜。为此,针对常规高斯核函数支持向量数据描述(SVDD)存在需要负类样本训练模型、计算... 基于高斯核函数的支持向量数据描述(SVDD),因其具有良好的异常检测性能,常被用于机械振动故障预警领域,但其性能的好坏受限于核函数带宽的取值是否适宜。为此,针对常规高斯核函数支持向量数据描述(SVDD)存在需要负类样本训练模型、计算量大、不收敛、不适用于小数值数据等问题,提出了一种不需要专家经验知识和负类样本训练SVDD超球体的优化核函数带宽计算方法,构建了基于优化SVDD核函数带宽的机械振动故障预警模型。首先,根据空间矩阵复杂度的信息熵,量化表征核函数带宽的取值对SVDD超球体的影响;然后,采用粒子群优化(PSO)算法寻找空间矩阵复杂度最大时对应的核函数带宽σ取值,实现了目标函数的快速收敛目的;综合考虑惩罚参数对SVDD超球体描述边界的影响,引入惩罚参数对寻优结果进行了修正,完成了对历史正常运行状态数据驱动的机械振动故障预警模型的构建任务;最后,应用辛辛那提大学智能维护中心轴承试验数据集等6项公开实验室数据和4项工程案例数据,对上述方法的实用性和可靠性进行了验证,并将其结果与采用常规方法所得结果进行了对比验证。研究结果表明:与常规方法相比,采用优化核函数带宽计算方法训练出的机械振动故障预警模型的合格率为100%,超球体描述边界拟合良好,并且不存在不收敛的问题。 展开更多
关键词 机械设备故障预警 高斯核函数 支持向量数据描述 核函数带宽 惩罚参数 超球体 空间矩阵复杂度 粒子群优化算法
下载PDF
基于改进的模型预测控制无人驾驶车辆路径跟踪控制
16
作者 周义棚 李聪 杨威 《上海工程技术大学学报》 CAS 2023年第2期164-172,共9页
为提高无人驾驶车辆路径跟踪精度和稳定性,提出一种基于粒子群优化(Particle Swarm Optimization,PSO)和高斯过程回归(Gaussian Process Regression,GPR)的模型预测控制(Model Predictive Control,MPC)参数自适应方法(PSO-MPC).使用PSO... 为提高无人驾驶车辆路径跟踪精度和稳定性,提出一种基于粒子群优化(Particle Swarm Optimization,PSO)和高斯过程回归(Gaussian Process Regression,GPR)的模型预测控制(Model Predictive Control,MPC)参数自适应方法(PSO-MPC).使用PSO离线优化MPC参数,利用GPR生成最优参数曲面,可在各种工况下提高无人驾驶车辆路径跟踪的性能.仿真结果表明,改进的MPC方法在整个路径跟踪过程中能保持车辆稳定性,同时实现良好的路径跟踪精度.最后,在真实的无人驾驶车辆上验证了改进的MPC方法的有效性. 展开更多
关键词 模型预测控制 粒子群优化算法 路径跟踪 横向控制 高斯过程回归
下载PDF
基于高斯扰动的粒子群优化算法 被引量:25
17
作者 朱德刚 孙辉 +1 位作者 赵嘉 余庆 《计算机应用》 CSCD 北大核心 2014年第3期754-759,共6页
针对标准粒子群优化(PSO)算法易陷入局部最优、进化后期收敛速度慢和收敛精度低的缺点,提出一种基于高斯扰动的粒子群优化算法。该算法采用对粒子个体最优位置加入高斯扰动策略,有效地防止算法陷入局部最优,加快收敛并提高收敛精度。在... 针对标准粒子群优化(PSO)算法易陷入局部最优、进化后期收敛速度慢和收敛精度低的缺点,提出一种基于高斯扰动的粒子群优化算法。该算法采用对粒子个体最优位置加入高斯扰动策略,有效地防止算法陷入局部最优,加快收敛并提高收敛精度。在固定评估次数的情况下,对8个常用的经典基准测试函数在30维上进行了仿真。实验结果表明,所提算法在收敛速度和寻优精度上优于一些知名的粒子群优化算法。 展开更多
关键词 粒子群优化算法 高斯扰动 快速收敛 全局搜索
下载PDF
基于多策略协同作用的粒子群优化算法 被引量:13
18
作者 李俊 汪冲 +1 位作者 李波 方国康 《计算机应用》 CSCD 北大核心 2016年第3期681-686,共6页
针对粒子群优化(PSO)算法容易早熟收敛、在进化后期收敛精度低的缺点,提出了一种基于多策略协同作用的粒子群优化(MSPSO)算法。首先,设定一个概率阈值为0.3,在粒子迭代过程中,如果随机生成的概率值小于阈值,则采用对当前种群中的最优个... 针对粒子群优化(PSO)算法容易早熟收敛、在进化后期收敛精度低的缺点,提出了一种基于多策略协同作用的粒子群优化(MSPSO)算法。首先,设定一个概率阈值为0.3,在粒子迭代过程中,如果随机生成的概率值小于阈值,则采用对当前种群中的最优个体进行反向学习并生成其反向解,以提高算法的收敛速度和收敛精度;否则,算法执行对粒子的位置进行高斯变异策略,以增强种群的多样性;其次,提出一种将柯西分布的比例参数进行线性递减的柯西变异策略,能够产生更好的解引导粒子向最优解空间运动;最后,在8个标准测试函数上进行仿真测试,MSPSO算法在Rosenbrock、Schwefel’s P2.22、Rotated Ackley、Quadric Noise、Ackley函数上收敛的平均值分别为1.68E+01、2.36E-283、8.88E-16、2.78E-05、8.88E-16,在Sphere、Griewank和Rastrigin函数上收敛达到最优解0,优于高斯扰动粒子群优化(GDPSO)算法、基于柯西变异的反向学习粒子群优化(GOPSO)算法。结果表明,所提出的算法收敛精度高,能避免粒子陷入局部最优。 展开更多
关键词 粒子群优化算法 反向学习 高斯变异 柯西变异:线性递减
下载PDF
改进粒子群和模拟退火混合算法及其应用 被引量:16
19
作者 郑申海 胡小兵 +1 位作者 郑满满 刘瑞杰 《计算机技术与发展》 2013年第7期26-30,共5页
基本粒子群优化算法每个粒子代表一个可行解,通过粒子间的协作来获得最优解。考虑粒子间协同作用,引入Gaussian核函数研究基于区域影响的粒子群算法(GPSO)。为了充分利用粒子群算法的快速全局收敛性和模拟退火算法能够跳出局部最优陷阱... 基本粒子群优化算法每个粒子代表一个可行解,通过粒子间的协作来获得最优解。考虑粒子间协同作用,引入Gaussian核函数研究基于区域影响的粒子群算法(GPSO)。为了充分利用粒子群算法的快速全局收敛性和模拟退火算法能够跳出局部最优陷阱的优点,得到高精度的最优解,将GPSO算法与模拟退火算法相结合,研究了一种新的混合粒子群算法。混合算法在GPSO算法处于停滞状态时,于搜索到最优位置用模拟退火算法继续寻找最优解。数值实验结果表明,新混合算法兼顾了GPSO和模拟退火算法的优点,具有收敛速度快、搜索精度高、鲁棒性好等特点。这说明文中的混合算法不失为一种有效的进化算法。 展开更多
关键词 粒子群算法 模拟退火算法 混合进化算法 gaussian核函数 区域影响
下载PDF
基于粒子群优化与高斯过程的协同优化算法 被引量:9
20
作者 张研 苏国韶 燕柳斌 《系统工程与电子技术》 EI CSCD 北大核心 2013年第6期1342-1347,共6页
对于适应度函数计算耗时较大的工程优化问题,采用仿生智能优化算法求解时常遇到由于适应度函数评价次数过大而导致计算量过高的瓶颈问题。针对上述问题,提出一种基于粒子群优化(particle swarm opti-mization,PSO)算法与高斯过程(Gaussi... 对于适应度函数计算耗时较大的工程优化问题,采用仿生智能优化算法求解时常遇到由于适应度函数评价次数过大而导致计算量过高的瓶颈问题。针对上述问题,提出一种基于粒子群优化(particle swarm opti-mization,PSO)算法与高斯过程(Gaussian process,GP)机器学习方法的协同优化算法(PSO-GP)。该算法在寻优过程中采用GP近似模型来构建决策变量与适应度函数值之间的映射关系,在PSO全局寻优过程中不断地总结寻优历史经验的基础上,预测可能包含全局最优解的搜索区域,以优化粒子群飞行的方向。多个测试函数的优化结果表明,该算法是可行的,与基本PSO算法相比,在获得全局最优解的前提下,可显著减小寻优过程中的适应度函数评价次数,寻优效率较高,在高计算代价复杂工程优化问题的求解上具有良好的应用前景。 展开更多
关键词 优化算法 粒子群优化 高斯过程 函数优化
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部