In optical techniques,noise signal is a classical problem in medical image processing.Recently,there has been considerable interest in using the wavelet transform with Bayesian estimation as a powerful tool for recove...In optical techniques,noise signal is a classical problem in medical image processing.Recently,there has been considerable interest in using the wavelet transform with Bayesian estimation as a powerful tool for recovering image from noisy data.In wavelet domain,if Bayesian estimator is used for denoising problem,the solution requires a prior knowledge about the distribution of wavelet coeffcients.Indeed,wavelet coeffcients might be better modeled by super Gaussian density.The super Gaussian density can be generated by Gaussian scale mixture(GSM).So,we present new minimum mean square error(MMSE)estimator for spherically-contoured GSM with Maxwell distribution in additive white Gaussian noise(AWGN).We compare our proposed method to current state-of-the-art method applied on standard test image and we quantify achieved performance improvement.展开更多
An improved approach for JSEG is presented for unsupervised segmentation of homogeneous regions in gray-scale images. Instead of intensity quantization, an automatic classification method based on scale space-based cl...An improved approach for JSEG is presented for unsupervised segmentation of homogeneous regions in gray-scale images. Instead of intensity quantization, an automatic classification method based on scale space-based clustering is used for nonparametric clustering of image data set. Then EM algorithm with classification achieved by space-based classification scheme as initial data used to achieve Gaussian mixture modelling of image data set that is utilized for the calculation of soft J value. Original region growing algorithm is then used to segment the image based on the multiscale soft J-images. Experiments show that the new method can overcome the limitations of JSEG successfully.展开更多
This paper improves and presents an advanced method of the voice conversion system based on Gaussian Mixture Models(GMM) models by changing the time-scale of speech.The Speech Transformation and Representation using A...This paper improves and presents an advanced method of the voice conversion system based on Gaussian Mixture Models(GMM) models by changing the time-scale of speech.The Speech Transformation and Representation using Adaptive Interpolation of weiGHTed spectrum(STRAIGHT) model is adopted to extract the spectrum features,and the GMM models are trained to generate the conversion function.The spectrum features of a source speech will be converted by the conversion function.The time-scale of speech is changed by extracting the converted features and adding to the spectrum.The conversion voice was evaluated by subjective and objective measurements.The results confirm that the transformed speech not only approximates the characteristics of the target speaker,but also more natural and more intelligible.展开更多
文摘In optical techniques,noise signal is a classical problem in medical image processing.Recently,there has been considerable interest in using the wavelet transform with Bayesian estimation as a powerful tool for recovering image from noisy data.In wavelet domain,if Bayesian estimator is used for denoising problem,the solution requires a prior knowledge about the distribution of wavelet coeffcients.Indeed,wavelet coeffcients might be better modeled by super Gaussian density.The super Gaussian density can be generated by Gaussian scale mixture(GSM).So,we present new minimum mean square error(MMSE)estimator for spherically-contoured GSM with Maxwell distribution in additive white Gaussian noise(AWGN).We compare our proposed method to current state-of-the-art method applied on standard test image and we quantify achieved performance improvement.
文摘An improved approach for JSEG is presented for unsupervised segmentation of homogeneous regions in gray-scale images. Instead of intensity quantization, an automatic classification method based on scale space-based clustering is used for nonparametric clustering of image data set. Then EM algorithm with classification achieved by space-based classification scheme as initial data used to achieve Gaussian mixture modelling of image data set that is utilized for the calculation of soft J value. Original region growing algorithm is then used to segment the image based on the multiscale soft J-images. Experiments show that the new method can overcome the limitations of JSEG successfully.
基金Supported by the National Natural Science Foundation of China (No. 60872105)the Program for Science & Technology Innovative Research Team of Qing Lan Project in Higher Educational Institutions of Jiangsuthe Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘This paper improves and presents an advanced method of the voice conversion system based on Gaussian Mixture Models(GMM) models by changing the time-scale of speech.The Speech Transformation and Representation using Adaptive Interpolation of weiGHTed spectrum(STRAIGHT) model is adopted to extract the spectrum features,and the GMM models are trained to generate the conversion function.The spectrum features of a source speech will be converted by the conversion function.The time-scale of speech is changed by extracting the converted features and adding to the spectrum.The conversion voice was evaluated by subjective and objective measurements.The results confirm that the transformed speech not only approximates the characteristics of the target speaker,but also more natural and more intelligible.