期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Improved pruning algorithm for Gaussian mixture probability hypothesis density filter 被引量:8
1
作者 NIE Yongfang ZHANG Tao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第2期229-235,共7页
With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved ... With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved pruning algorithm for the GM-PHD filter, which utilizes not only the Gaussian components’ means and covariance, but their weights as a new criterion to improve the estimate accuracy of the conventional pruning algorithm for tracking very closely proximity targets. Moreover, it solves the end-less while-loop problem without the need of a second merging step. Simulation results show that this improved algorithm is easier to implement and more robust than the formal ones. 展开更多
关键词 Gaussian mixture probability hypothesis density(gm-phd) filter pruning algorithm proximity targets clutter rate
下载PDF
多普勒盲区下基于GM-PHD的雷达多目标跟踪算法 被引量:8
2
作者 尉强 刘忠 《雷达学报(中英文)》 CSCD 2017年第1期34-42,共9页
在多普勒雷达目标跟踪过程中,由于多普勒盲区(DBZ)的存在使得跟踪问题更为复杂。针对该问题,该文基于高斯混合概率假设密度(GM-PHD)提出了一种适用于多普勒盲区的多目标跟踪算法。该算法在常规检测概率模型中引入最小可检测速度(MDV)信... 在多普勒雷达目标跟踪过程中,由于多普勒盲区(DBZ)的存在使得跟踪问题更为复杂。针对该问题,该文基于高斯混合概率假设密度(GM-PHD)提出了一种适用于多普勒盲区的多目标跟踪算法。该算法在常规检测概率模型中引入最小可检测速度(MDV)信息,并将该检测概率模型应用于传统GM-PHD更新方程中,推导出多普勒盲区下的GM-PHD更新方程。蒙特卡罗仿真实验结果表明:与只有多普勒量测信息的传统GM-PHD算法相比,新算法在较小的MDV条件下能够明显提高雷达对运动目标的跟踪性能。 展开更多
关键词 多普勒盲区 最小可检测速度 多普勒信息 高斯混合概率假设密度
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部