Highly efficient phosphors under vacuum ultraviolet excitation are still demanded for the development of plasma display panels and Hg-free fluorescent lamps. The phosphors of Eu3+ doped (Y, Gd, Lu)BO3 were synthesi...Highly efficient phosphors under vacuum ultraviolet excitation are still demanded for the development of plasma display panels and Hg-free fluorescent lamps. The phosphors of Eu3+ doped (Y, Gd, Lu)BO3 were synthesized with solid state reaction method and the contents of y3+ Gd3+, and Lu3+ for plasma display panel red phosphor were optimized under vacuum ultraviolet excitation. Two new potential candidates, which were (Y1-S-TGdsLuT)BO3: Eu^3+ (0〈S〈0.2, 0〈T〈0.1) and (GdlYJLuK)BO3: Eu3+ (0.5〈I〈0.7, 0.2〈J〈0.4, 0〈K〈0.1), were olgtained. The mechanism of luminescence improvement was discussed upon the analysis of crystal microstructure and excitation spectra.展开更多
基金supported by the Special Foundation of Hefei University of Technology for Doctor Degree Staff (103-036402)the Postdoctoral Research Fellow of Materials Science and Engineering of Hefei University of Technology (103-035038)
文摘Highly efficient phosphors under vacuum ultraviolet excitation are still demanded for the development of plasma display panels and Hg-free fluorescent lamps. The phosphors of Eu3+ doped (Y, Gd, Lu)BO3 were synthesized with solid state reaction method and the contents of y3+ Gd3+, and Lu3+ for plasma display panel red phosphor were optimized under vacuum ultraviolet excitation. Two new potential candidates, which were (Y1-S-TGdsLuT)BO3: Eu^3+ (0〈S〈0.2, 0〈T〈0.1) and (GdlYJLuK)BO3: Eu3+ (0.5〈I〈0.7, 0.2〈J〈0.4, 0〈K〈0.1), were olgtained. The mechanism of luminescence improvement was discussed upon the analysis of crystal microstructure and excitation spectra.