Gd2O3:Er^3+nanophosphors were fabricated by the combustion method in presence of Na2 ethylene diamine tetra acetic acid(EDTA-Na2)as fuel at not high temperature(≤350℃)within a very short time of 5 min.The added conc...Gd2O3:Er^3+nanophosphors were fabricated by the combustion method in presence of Na2 ethylene diamine tetra acetic acid(EDTA-Na2)as fuel at not high temperature(≤350℃)within a very short time of 5 min.The added concentration of Er^3+ions in Gd2O3 matrix was changed from 0.5 mol%to 5.0 mol%.The X-ray diffraction pattern of samples indicates the monoclinic structure of Gd2O3:Er^3+.The morphology and chemical composition analysis of the Gd2O3:Er^3+samples are characterized by a field emission scanning electron microscope(FESEM)and a Fourier-transform infrared spectrometer(FTIR).The photoluminescence(PL),photo luminescence excitation(PLE)and upconversion(UC)at room temperature of the prepared materials with different concentrations of Er^3+were investigated.The PL of Gd2O3:Er^3+nanomaterials are shown in visible at 545,594,623,648,688 nm under excitation at 275 nm.The emission bands from transitions of Er^3+from 2P3/2 to 4F9/2 are observed,UC luminescent spectra of the Gd2O3:Er^3+/silica nanocomposites under 976 nm excitation show the bands at 548 and 670 nm.The influence of excitation power at 980 nm for transitions were measured and calculated.The results indicate that the upconversion process of Gd2O3:Er^3+/silica is two photons absorption mechanism.The low temperature dependence of UC luminescent intensities of the main bands of Gd2O3:Er^3+was investigated towards development of a nanotemperature sensor in the range of 10-300 K.展开更多
Europium-doped gadolinium oxide (Gd2O3:Eu) nanoparticles have been synthesized, and then their surfaces have been conjugated with nucleolin- targeted AS1411 aptamer to form functionalized target-specific Gd2OB:EU ...Europium-doped gadolinium oxide (Gd2O3:Eu) nanoparticles have been synthesized, and then their surfaces have been conjugated with nucleolin- targeted AS1411 aptamer to form functionalized target-specific Gd2OB:EU nanoparticles (A-GdO:Eu nanoparticles). The A-GdO:Eu nanoparticles present strong fluorescence in the visible range, high magnetic susceptibility, X-ray attenuation and good biocompatibility. The A-GdO:Eu nanoparticles have been applied to test molecular expression of nucleolin highly expressed CL1-5 lung cancer cells under a confocal microscope. Fluorescence imaging clearly reveals that the nanoparticles can be applied as fluorescent tags for cancer-targeting molecular imaging. Furthermore, taking together their excellent T1 contrast and strong computed tomography (CT) signal, the A-GdO:Eu nanoparticles demonstrate a great capability for use as a dual modality contrast agent for CT and magnetic resonance (MR) molecular imaging. Animal experiments also show that the A-GdO:Eu nanoparticles are able to contrast the tissues of BALB/c mice using CT modality. Moreover, the obvious red fluorescence of A-GdO:Eu nanoparticles can be visualized in a tumor by the naked eye. Overall, our results demonstrate that the A-GdO:Eu nanoparticles can not only serve as new medical contrast agents but also as intraoperative fluorescence imaging probes for guided surgery in the near future.展开更多
Nanoporous Gd2O3 powders(NGPs) with different specific surface areas were prepared by a nonaqueous sol-gel method and utilized to tune the exothermal decomposition of ammonium perchlorate(AP) for enhanced propellant e...Nanoporous Gd2O3 powders(NGPs) with different specific surface areas were prepared by a nonaqueous sol-gel method and utilized to tune the exothermal decomposition of ammonium perchlorate(AP) for enhanced propellant efficiency and improved safety.It is found that with the increasing dosage of NGPs into AP,the two exothermal peaks of AP merge into one intense exothermal peak,indicating that an "energy stacking" has been achieved.Meanwhile,the unique delay of the first exothermal peak of AP is conducive to the safety of AP in application process.Furthermore,the dependence of decomposition heat of AP on dosage and calcination temperature is more evident than on the surface areas of NGPs,suggesting that the promotion effect of NGPs on the thermal decomposition of AP does not only rely on the surface interaction.Therefore,an electron transfer mechanism is proposed to illustrate the decomposition process of AP tuned by NGPs.展开更多
It is urgent to find a technology accurately to better diagnose and treat to brain tumor.Eu-doped Gd2 O3 nanorods(Eu-Gd2 O3 NRs)with paramagnetic and fluorescent properties were conjugated with doxorubicin(Dox)and chl...It is urgent to find a technology accurately to better diagnose and treat to brain tumor.Eu-doped Gd2 O3 nanorods(Eu-Gd2 O3 NRs)with paramagnetic and fluorescent properties were conjugated with doxorubicin(Dox)and chlorotoxin(CTX)via PEGylation,hydrazone bond and sulfur bond(named as CTXNRs-Dox),and these NRs could release more Dox in lower pH environment.The results of cell experiments indicated that CTX-NRs-Dox had obvious targeting and toxic effects on U251 cells,as well as good fluorescence imaging behavior.The orthotopic glioma-transplanted mice models were constructed via the intracranial injection of glioma cells(U87 MG).The result of experiments after the tail-vein injection of the prepared NRs suggested that CTX-NRs-Dox could target to brain tumors via the long-time blood circulation,leading to their obvious contrast enhancement of MR imaging of the intracranial tumor and their significant inhibitory effect on the growth and metastasis of brain tumors.A mechanism of synergistic effect of CTX-NRs-Dox on targeting and inhabiting the brain tumor was proposed.Our research suggested that CTX-NRs-Dox had potential application prospect in the detection and treatment of glioma.展开更多
Physical vapor deposition(PVD)can be used to produce high-quality Gd_(2)O_(3)-doped CeO2(GDC)films.Among various PVD methods,reactive sputtering provides unique benefits,such as high deposition rates and easy upscalin...Physical vapor deposition(PVD)can be used to produce high-quality Gd_(2)O_(3)-doped CeO2(GDC)films.Among various PVD methods,reactive sputtering provides unique benefits,such as high deposition rates and easy upscaling for industrial applications.GDC thin films were successfully fabricated through reactive sputtering using a Gd_(0.2)Ce_(0.8)(at%)metallic target,and their application in solid oxide fuel cells,such as buffer layers between yttria-stabilized zirconia(YSZ)/La0.6Sr0.4Co0.2Fe0.8O_(3−δ)and as sublayers in the steel/coating system,was evaluated.First,the direct current(DC)reactive-sputtering behavior of the GdCe metallic target was determined.Then,the GDC films were deposited on NiO-YSZ/YSZ half-cells to investigate the influence of oxygen flow rate on the quality of annealed GDC films.The results demonstrated that reactive sputtering can be used to prepare thin and dense GDC buffer layers without high-temperature sintering.Furthermore,the cells with a sputtered GDC buffer layer showed better electrochemical performance than those with a screen-printed GDC buffer layer.In addition,the insertion of a GDC sublayer between the SUS441 interconnects and the Mn-Co spinel coatings contributed to the reduction of the oxidation rate for SUS441 at operating temperatures,according to the area-specific resistance tests.展开更多
基金Project supported by the Vietnam National Foundation for Science and Technology Development(NAFOSTED)(103.03-2015.85)
文摘Gd2O3:Er^3+nanophosphors were fabricated by the combustion method in presence of Na2 ethylene diamine tetra acetic acid(EDTA-Na2)as fuel at not high temperature(≤350℃)within a very short time of 5 min.The added concentration of Er^3+ions in Gd2O3 matrix was changed from 0.5 mol%to 5.0 mol%.The X-ray diffraction pattern of samples indicates the monoclinic structure of Gd2O3:Er^3+.The morphology and chemical composition analysis of the Gd2O3:Er^3+samples are characterized by a field emission scanning electron microscope(FESEM)and a Fourier-transform infrared spectrometer(FTIR).The photoluminescence(PL),photo luminescence excitation(PLE)and upconversion(UC)at room temperature of the prepared materials with different concentrations of Er^3+were investigated.The PL of Gd2O3:Er^3+nanomaterials are shown in visible at 545,594,623,648,688 nm under excitation at 275 nm.The emission bands from transitions of Er^3+from 2P3/2 to 4F9/2 are observed,UC luminescent spectra of the Gd2O3:Er^3+/silica nanocomposites under 976 nm excitation show the bands at 548 and 670 nm.The influence of excitation power at 980 nm for transitions were measured and calculated.The results indicate that the upconversion process of Gd2O3:Er^3+/silica is two photons absorption mechanism.The low temperature dependence of UC luminescent intensities of the main bands of Gd2O3:Er^3+was investigated towards development of a nanotemperature sensor in the range of 10-300 K.
文摘Europium-doped gadolinium oxide (Gd2O3:Eu) nanoparticles have been synthesized, and then their surfaces have been conjugated with nucleolin- targeted AS1411 aptamer to form functionalized target-specific Gd2OB:EU nanoparticles (A-GdO:Eu nanoparticles). The A-GdO:Eu nanoparticles present strong fluorescence in the visible range, high magnetic susceptibility, X-ray attenuation and good biocompatibility. The A-GdO:Eu nanoparticles have been applied to test molecular expression of nucleolin highly expressed CL1-5 lung cancer cells under a confocal microscope. Fluorescence imaging clearly reveals that the nanoparticles can be applied as fluorescent tags for cancer-targeting molecular imaging. Furthermore, taking together their excellent T1 contrast and strong computed tomography (CT) signal, the A-GdO:Eu nanoparticles demonstrate a great capability for use as a dual modality contrast agent for CT and magnetic resonance (MR) molecular imaging. Animal experiments also show that the A-GdO:Eu nanoparticles are able to contrast the tissues of BALB/c mice using CT modality. Moreover, the obvious red fluorescence of A-GdO:Eu nanoparticles can be visualized in a tumor by the naked eye. Overall, our results demonstrate that the A-GdO:Eu nanoparticles can not only serve as new medical contrast agents but also as intraoperative fluorescence imaging probes for guided surgery in the near future.
基金Project supported by the National Natural Science Foundation of China(51864033,51274123,21761020)the National Key Basic Research Program of China(973 Program,2012CBA01204)Jiangxi Provincial Scientific&Technological Support Project of China(20132BBE500041)
文摘Nanoporous Gd2O3 powders(NGPs) with different specific surface areas were prepared by a nonaqueous sol-gel method and utilized to tune the exothermal decomposition of ammonium perchlorate(AP) for enhanced propellant efficiency and improved safety.It is found that with the increasing dosage of NGPs into AP,the two exothermal peaks of AP merge into one intense exothermal peak,indicating that an "energy stacking" has been achieved.Meanwhile,the unique delay of the first exothermal peak of AP is conducive to the safety of AP in application process.Furthermore,the dependence of decomposition heat of AP on dosage and calcination temperature is more evident than on the surface areas of NGPs,suggesting that the promotion effect of NGPs on the thermal decomposition of AP does not only rely on the surface interaction.Therefore,an electron transfer mechanism is proposed to illustrate the decomposition process of AP tuned by NGPs.
基金supported by the National Natural Science Foundation of China (Nos.51273122,51872190)Sichuan Science and Technology Project (No.2018JY0535)supported by the Fundamental of Research Funds for the Central University (Nos.SCU2017A001,2018SCUH0024)
文摘It is urgent to find a technology accurately to better diagnose and treat to brain tumor.Eu-doped Gd2 O3 nanorods(Eu-Gd2 O3 NRs)with paramagnetic and fluorescent properties were conjugated with doxorubicin(Dox)and chlorotoxin(CTX)via PEGylation,hydrazone bond and sulfur bond(named as CTXNRs-Dox),and these NRs could release more Dox in lower pH environment.The results of cell experiments indicated that CTX-NRs-Dox had obvious targeting and toxic effects on U251 cells,as well as good fluorescence imaging behavior.The orthotopic glioma-transplanted mice models were constructed via the intracranial injection of glioma cells(U87 MG).The result of experiments after the tail-vein injection of the prepared NRs suggested that CTX-NRs-Dox could target to brain tumors via the long-time blood circulation,leading to their obvious contrast enhancement of MR imaging of the intracranial tumor and their significant inhibitory effect on the growth and metastasis of brain tumors.A mechanism of synergistic effect of CTX-NRs-Dox on targeting and inhabiting the brain tumor was proposed.Our research suggested that CTX-NRs-Dox had potential application prospect in the detection and treatment of glioma.
基金financially supported by the National Key R&D Program of China (No. 2018YFB1502203-1)the Guangdong Basic and Applied Basic Research Foundation (No. 2021B1515120087)the Stable Supporting Fund of Shenzhen, China (No. GXWD20201230155427003-202007 28114835006)
文摘Physical vapor deposition(PVD)can be used to produce high-quality Gd_(2)O_(3)-doped CeO2(GDC)films.Among various PVD methods,reactive sputtering provides unique benefits,such as high deposition rates and easy upscaling for industrial applications.GDC thin films were successfully fabricated through reactive sputtering using a Gd_(0.2)Ce_(0.8)(at%)metallic target,and their application in solid oxide fuel cells,such as buffer layers between yttria-stabilized zirconia(YSZ)/La0.6Sr0.4Co0.2Fe0.8O_(3−δ)and as sublayers in the steel/coating system,was evaluated.First,the direct current(DC)reactive-sputtering behavior of the GdCe metallic target was determined.Then,the GDC films were deposited on NiO-YSZ/YSZ half-cells to investigate the influence of oxygen flow rate on the quality of annealed GDC films.The results demonstrated that reactive sputtering can be used to prepare thin and dense GDC buffer layers without high-temperature sintering.Furthermore,the cells with a sputtered GDC buffer layer showed better electrochemical performance than those with a screen-printed GDC buffer layer.In addition,the insertion of a GDC sublayer between the SUS441 interconnects and the Mn-Co spinel coatings contributed to the reduction of the oxidation rate for SUS441 at operating temperatures,according to the area-specific resistance tests.