Long-lasting phosphor Y2O2S : Eu^3+ , Mg^2+ , Ti^4+ was synthesized by a flux method and their luminescence properties were investigated. The result indicates that the unit cell parameter c is linearly increased w...Long-lasting phosphor Y2O2S : Eu^3+ , Mg^2+ , Ti^4+ was synthesized by a flux method and their luminescence properties were investigated. The result indicates that the unit cell parameter c is linearly increased with the increase of Eu2O3 content in Y2O2S: Eu^3+ (0.01 ≤ x ≤0.10). On the other hand, the change of unit cell parameter a is not linear dependence. In the Y2O2S: Eu^3 + crystal structure, Eu^3+ ions only replaced Y^3 + ions' places in which it posited center position of c axis. With the increase of Eu2O3 content, the position of the strongest emission peak changed from 540 nm (5D1→^ 7F2 transition) to 626 nm (^5Do→^7TF2 transition), and the maximum intensity was obtained when x = 0.09 in Y2O2S: Eu^3+ (0.01 ≤x ≤0.10). This is due to the environment of trivalent europium in the crystal structure of Y2O2S. Doping with Mg^2+ or Ti^4+. ions alone cannot get the good long-lasting afterglow effect, whereas co-doping with Mg^2 + and Ti^4 + ions and excited with 365 nm ultraviolet light, a strong thermoluminesence peak appeared, red and orange long-lasting phosphorescence (LLP) was also observed and the phosphorescence lasted nearly 3 h in the light perception of the dark-adapted human eye (0.32 mcd·m^-2). Thus the LLP mechanism was analyzed.展开更多
At low temperature, some long-lasting phosphors could not work well in practical applications. So it is necessary to investigate the temperature dependence of the phosphors. The Y2O2S.Eu, Ti, Mg microcrystalline sampl...At low temperature, some long-lasting phosphors could not work well in practical applications. So it is necessary to investigate the temperature dependence of the phosphors. The Y2O2S.Eu, Ti, Mg microcrystalline samples were prepared by solid state reaction method. Phosphors were sintered at 1150 ℃ for 20 min in air, putting in and taking out both at high temperature. The emission spectra and the afterglow spectra as well as the thermoluminescence curve were measured for Y2O2S:Eu,展开更多
In this study, down-conversion fluorescent powder of Sr2ZnSi2O7:Eu-(2+),Dy-(3+), SrAl2O4:Eu-(2+),Dy-(3+) and Y2O2S:Eu-(3+),Mg-(2+),Ti-(4+), which were the common three primary colors materials ...In this study, down-conversion fluorescent powder of Sr2ZnSi2O7:Eu-(2+),Dy-(3+), SrAl2O4:Eu-(2+),Dy-(3+) and Y2O2S:Eu-(3+),Mg-(2+),Ti-(4+), which were the common three primary colors materials with long afterglow, were synthesized by high temperature solid state method. The blends of rare earth(RE) luminescent materials have been of interest to reinvest the luminescent characteristics of polyethylene terephtahalate(PET) luminous fiber. The scanning electron microscopy(SEM) and an inversion fluorescence microscope were used to characterize the surface morphology and the dispersion of inclusion. Through analysis of microcosmic morphology, three typical dispersions of luminescent particles were summarized. The X-ray diffraction indicated that the phase structure of fiber samples and crystal structure of luminescence materials kept complete after prilling and spinning. From the fluorescence spectra and CIE 1931 coordinates, it could be found that different combinations of luminous fibers were desired to obtain divers colors emission luminous fiber. And the fiber samples were a light sensation which could induct different excitation wavelengths and convert it down to different colors. The afterglow decay curve and its differential curve were summarized indicating the three decay stages. The decay curve and decay rate curve showed that the contents of Sr2ZnSi2O7:Eu-(2+),Dy-(3+), SrAl2O4:Eu-(2+),Dy-(3+) and Y2O2S:Eu-(3+),Mg-(2+),Ti-(4+) had obvious influence on the afterglow of fiber samples.展开更多
文摘Long-lasting phosphor Y2O2S : Eu^3+ , Mg^2+ , Ti^4+ was synthesized by a flux method and their luminescence properties were investigated. The result indicates that the unit cell parameter c is linearly increased with the increase of Eu2O3 content in Y2O2S: Eu^3+ (0.01 ≤ x ≤0.10). On the other hand, the change of unit cell parameter a is not linear dependence. In the Y2O2S: Eu^3 + crystal structure, Eu^3+ ions only replaced Y^3 + ions' places in which it posited center position of c axis. With the increase of Eu2O3 content, the position of the strongest emission peak changed from 540 nm (5D1→^ 7F2 transition) to 626 nm (^5Do→^7TF2 transition), and the maximum intensity was obtained when x = 0.09 in Y2O2S: Eu^3+ (0.01 ≤x ≤0.10). This is due to the environment of trivalent europium in the crystal structure of Y2O2S. Doping with Mg^2+ or Ti^4+. ions alone cannot get the good long-lasting afterglow effect, whereas co-doping with Mg^2 + and Ti^4 + ions and excited with 365 nm ultraviolet light, a strong thermoluminesence peak appeared, red and orange long-lasting phosphorescence (LLP) was also observed and the phosphorescence lasted nearly 3 h in the light perception of the dark-adapted human eye (0.32 mcd·m^-2). Thus the LLP mechanism was analyzed.
文摘At low temperature, some long-lasting phosphors could not work well in practical applications. So it is necessary to investigate the temperature dependence of the phosphors. The Y2O2S.Eu, Ti, Mg microcrystalline samples were prepared by solid state reaction method. Phosphors were sintered at 1150 ℃ for 20 min in air, putting in and taking out both at high temperature. The emission spectra and the afterglow spectra as well as the thermoluminescence curve were measured for Y2O2S:Eu,
基金Project supported by the National Natural Science Foundation of China(51503082)the Fundamental Research Funds for the Central Universities(JUSRP51505,JUSRP116020)Jiangsu Province Ordinary University Academic Degree Graduate Student Scientific Research Innovation Projects(KYLX16-0791)
文摘In this study, down-conversion fluorescent powder of Sr2ZnSi2O7:Eu-(2+),Dy-(3+), SrAl2O4:Eu-(2+),Dy-(3+) and Y2O2S:Eu-(3+),Mg-(2+),Ti-(4+), which were the common three primary colors materials with long afterglow, were synthesized by high temperature solid state method. The blends of rare earth(RE) luminescent materials have been of interest to reinvest the luminescent characteristics of polyethylene terephtahalate(PET) luminous fiber. The scanning electron microscopy(SEM) and an inversion fluorescence microscope were used to characterize the surface morphology and the dispersion of inclusion. Through analysis of microcosmic morphology, three typical dispersions of luminescent particles were summarized. The X-ray diffraction indicated that the phase structure of fiber samples and crystal structure of luminescence materials kept complete after prilling and spinning. From the fluorescence spectra and CIE 1931 coordinates, it could be found that different combinations of luminous fibers were desired to obtain divers colors emission luminous fiber. And the fiber samples were a light sensation which could induct different excitation wavelengths and convert it down to different colors. The afterglow decay curve and its differential curve were summarized indicating the three decay stages. The decay curve and decay rate curve showed that the contents of Sr2ZnSi2O7:Eu-(2+),Dy-(3+), SrAl2O4:Eu-(2+),Dy-(3+) and Y2O2S:Eu-(3+),Mg-(2+),Ti-(4+) had obvious influence on the afterglow of fiber samples.