Gear fault diagnosis technologies have received rapid development and been effectively implemented in many engineering applications.However,the various working conditions would degrade the diagnostic performance and m...Gear fault diagnosis technologies have received rapid development and been effectively implemented in many engineering applications.However,the various working conditions would degrade the diagnostic performance and make gear fault diagnosis(GFD)more and more challenging.In this paper,a novel model parameter transfer(NMPT)is proposed to boost the performance of GFD under varying working conditions.Based on the previous transfer strategy that controls empirical risk of source domain,this method further integrates the superiorities of multi-task learning with the idea of transfer learning(TL)to acquire transferable knowledge by minimizing the discrepancies of separating hyperplanes between one specific working condition(target domain)and another(source domain),and then transferring both commonality and specialty parameters over tasks to make use of source domain samples to assist target GFD task when sufficient labeled samples from target domain are unavailable.For NMPT implementation,insufficient target domain features and abundant source domain features with supervised information are fed into NMPT model to train a robust classifier for target GFD task.Related experiments prove that NMPT is expected to be a valuable technology to boost practical GFD performance under various working conditions.The proposed methods provides a transfer learning-based framework to handle the problem of insufficient training samples in target task caused by variable operation conditions.展开更多
Although many methods have been applied to diagnose the gear thult currently, the sensitivity of them is not very good. In order to make the diagnosis methods have more excellent integrated ability in such aspects as ...Although many methods have been applied to diagnose the gear thult currently, the sensitivity of them is not very good. In order to make the diagnosis methods have more excellent integrated ability in such aspects as precision, sensitivity, reliability and compact algorithm, and so on, and enlightened by the energy operator separation algorithm (EOSA), a new demodulation method which is optimizing energy operator separation algorithm (OEOSA) is presented. In the algorithm, the non-linear differential operator is utilized to its differential equation: Choosing the unit impulse response length of filter and fixing the weighting coefficient for inportant points. The method has been applied in diagnosing tooth broden and fatiguing crack of gear faults successfully. It provides demodulation analysis of machine signal with a new approach.展开更多
Gear vibration analysis and gear fault diagnosis are related to the multi-objective decision-making process of machinery equipment production, in which a large amount of data and information should be collected, and t...Gear vibration analysis and gear fault diagnosis are related to the multi-objective decision-making process of machinery equipment production, in which a large amount of data and information should be collected, and the relationship between supply/demand needs and available resources, between production and labor, and between enterprise benefit and social benefit should be balanced generally. Thus, the gear fault diagnosis technologies as well as the professional quality and technical quality are required to be very high. To conform to the forward development of mathematical modeling technology, it is urgent to implement safety product management with computer by using gear vibration analysis and gear fault diagnosis as methods for aiding the research and development of machinery gear fault diagnosis system. 7展开更多
Aiming at the problems of lack of fault diagnosis samples and low model generalization ability of cross-working gear based on deep transfer learning, a fault diagnosis method based on improved deep residual network an...Aiming at the problems of lack of fault diagnosis samples and low model generalization ability of cross-working gear based on deep transfer learning, a fault diagnosis method based on improved deep residual network and transfer learning was proposed. Firstly, one-dimensional signal is transformed into two-dimensional time-frequency image by continuous wavelet transform. Then, a deep learning model based on ResNet50 is constructed. Attention mechanism is introduced into the model to make the model pay more attention to the useful features for the current task. The network parameters trained by ResNet50 network on ImageNet dataset were used to initialize the model and applied to the fault diagnosis field. Finally, to solve the problem of gear fault diagnosis under different working conditions, a small sample training set is proposed for fault diagnosis. The method is applied to gearbox fault diagnosis, and the results show that: The proposed deep model achieves 99.7% accuracy of gear fault diagnosis, which is better than the four models such as VGG19 and MobileNetV2. In the cross-working condition fault diagnosis, only 20% target dataset is used as the training set, and the proposed method achieves 93.5% accuracy.展开更多
This paper presents a procedure of sing le gear tooth analysis for early detection and diagnosis of gear faults. The objec tive of this procedure is to develop a method for more sensitive detection of th e incipient ...This paper presents a procedure of sing le gear tooth analysis for early detection and diagnosis of gear faults. The objec tive of this procedure is to develop a method for more sensitive detection of th e incipient faults and locating the faults in the gear. The main idea of the sin gle gear tooth analysis is that the vibration signals collected with a high samp ling rate are divided into a number of segments with the same time interval. The number of signal segments is equal to that of the gear teeth. The analysis of i ndividual segments reveals more sensitively the changes of the vibration signals in both time and frequency domain caused by gear faults. In addition, the locat ion of a failed tooth can be indicated in terms of the position of the segment t hat deviates from the normal segments. An experimental investigation verified th e advantages of the single gear tooth analysis.展开更多
Because the extract of the weak failure information is always the difficulty and focus of fault detection. Aiming for specific statistical properties of complex wavelet coefficients of gearbox vibration signals, a new...Because the extract of the weak failure information is always the difficulty and focus of fault detection. Aiming for specific statistical properties of complex wavelet coefficients of gearbox vibration signals, a new signal-denoising method which uses local adaptive algorithm based on dual-tree complex wavelet transform (DT-CWT) is introduced to extract weak failure information in gear, especially to extract impulse components. By taking into account the non-Gaussian probability distribution and the statistical dependencies among wavelet coefficients of some signals, and by taking the advantage of near shift-invariance of DT-CWT, the higher signal-to-noise ratio (SNR) than common wavelet denoising methods can be obtained. Experiments of extracting periodic impulses in gearbox vibration signals indicate that the method can extract incipient fault feature and hidden information from heavy noise, and it has an excellent effect on identifying weak feature signals in gearbox vibration signals.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51835009).
文摘Gear fault diagnosis technologies have received rapid development and been effectively implemented in many engineering applications.However,the various working conditions would degrade the diagnostic performance and make gear fault diagnosis(GFD)more and more challenging.In this paper,a novel model parameter transfer(NMPT)is proposed to boost the performance of GFD under varying working conditions.Based on the previous transfer strategy that controls empirical risk of source domain,this method further integrates the superiorities of multi-task learning with the idea of transfer learning(TL)to acquire transferable knowledge by minimizing the discrepancies of separating hyperplanes between one specific working condition(target domain)and another(source domain),and then transferring both commonality and specialty parameters over tasks to make use of source domain samples to assist target GFD task when sufficient labeled samples from target domain are unavailable.For NMPT implementation,insufficient target domain features and abundant source domain features with supervised information are fed into NMPT model to train a robust classifier for target GFD task.Related experiments prove that NMPT is expected to be a valuable technology to boost practical GFD performance under various working conditions.The proposed methods provides a transfer learning-based framework to handle the problem of insufficient training samples in target task caused by variable operation conditions.
基金This project is supported by National Ministry of Education of China (No.020616)Science and Technology Project of Municipal Educational Committee of Chongqing(No.030602)Scientific Research Foundation of Chongqing Institute of Technology(No.2004ZD10).
文摘Although many methods have been applied to diagnose the gear thult currently, the sensitivity of them is not very good. In order to make the diagnosis methods have more excellent integrated ability in such aspects as precision, sensitivity, reliability and compact algorithm, and so on, and enlightened by the energy operator separation algorithm (EOSA), a new demodulation method which is optimizing energy operator separation algorithm (OEOSA) is presented. In the algorithm, the non-linear differential operator is utilized to its differential equation: Choosing the unit impulse response length of filter and fixing the weighting coefficient for inportant points. The method has been applied in diagnosing tooth broden and fatiguing crack of gear faults successfully. It provides demodulation analysis of machine signal with a new approach.
文摘Gear vibration analysis and gear fault diagnosis are related to the multi-objective decision-making process of machinery equipment production, in which a large amount of data and information should be collected, and the relationship between supply/demand needs and available resources, between production and labor, and between enterprise benefit and social benefit should be balanced generally. Thus, the gear fault diagnosis technologies as well as the professional quality and technical quality are required to be very high. To conform to the forward development of mathematical modeling technology, it is urgent to implement safety product management with computer by using gear vibration analysis and gear fault diagnosis as methods for aiding the research and development of machinery gear fault diagnosis system. 7
文摘Aiming at the problems of lack of fault diagnosis samples and low model generalization ability of cross-working gear based on deep transfer learning, a fault diagnosis method based on improved deep residual network and transfer learning was proposed. Firstly, one-dimensional signal is transformed into two-dimensional time-frequency image by continuous wavelet transform. Then, a deep learning model based on ResNet50 is constructed. Attention mechanism is introduced into the model to make the model pay more attention to the useful features for the current task. The network parameters trained by ResNet50 network on ImageNet dataset were used to initialize the model and applied to the fault diagnosis field. Finally, to solve the problem of gear fault diagnosis under different working conditions, a small sample training set is proposed for fault diagnosis. The method is applied to gearbox fault diagnosis, and the results show that: The proposed deep model achieves 99.7% accuracy of gear fault diagnosis, which is better than the four models such as VGG19 and MobileNetV2. In the cross-working condition fault diagnosis, only 20% target dataset is used as the training set, and the proposed method achieves 93.5% accuracy.
文摘This paper presents a procedure of sing le gear tooth analysis for early detection and diagnosis of gear faults. The objec tive of this procedure is to develop a method for more sensitive detection of th e incipient faults and locating the faults in the gear. The main idea of the sin gle gear tooth analysis is that the vibration signals collected with a high samp ling rate are divided into a number of segments with the same time interval. The number of signal segments is equal to that of the gear teeth. The analysis of i ndividual segments reveals more sensitively the changes of the vibration signals in both time and frequency domain caused by gear faults. In addition, the locat ion of a failed tooth can be indicated in terms of the position of the segment t hat deviates from the normal segments. An experimental investigation verified th e advantages of the single gear tooth analysis.
基金Beijing Municipal Natural Science Foundation of China (No. 3062012).
文摘Because the extract of the weak failure information is always the difficulty and focus of fault detection. Aiming for specific statistical properties of complex wavelet coefficients of gearbox vibration signals, a new signal-denoising method which uses local adaptive algorithm based on dual-tree complex wavelet transform (DT-CWT) is introduced to extract weak failure information in gear, especially to extract impulse components. By taking into account the non-Gaussian probability distribution and the statistical dependencies among wavelet coefficients of some signals, and by taking the advantage of near shift-invariance of DT-CWT, the higher signal-to-noise ratio (SNR) than common wavelet denoising methods can be obtained. Experiments of extracting periodic impulses in gearbox vibration signals indicate that the method can extract incipient fault feature and hidden information from heavy noise, and it has an excellent effect on identifying weak feature signals in gearbox vibration signals.