The Nianzi granite unit,which includes the Nianzi,Xiaolianghou and Xiawopu granitic intrusions,is a significant component of the northern part of the North China Craton(NCC)and is situated in the Yanshan fold and thru...The Nianzi granite unit,which includes the Nianzi,Xiaolianghou and Xiawopu granitic intrusions,is a significant component of the northern part of the North China Craton(NCC)and is situated in the Yanshan fold and thrust belt(YFTB).However,there is still debate regarding the tectonic evolutionary history of the YFTB during the late Permian to Triassic period,specifically regarding the timing of subduction and collision between the NCC and the Paleo-Asian Ocean.The Nianzi granite unit exhibits unique petrological,geochronological and geochemical signatures that shed light on the tectonic evolutionary history of the YFTB.This study presents detailed petrology,whole-rock geochemistry,together with Sr-Nd isotopic,zircon U-Pb dating and Lu-Hf isotopic data of the granites within the Nianzi granite unit.Our findings demonstrate that the granites primarily consist of subhedral K-feldspar,plagioclase,quartz,minor biotite and hornblende,with accessory titanite,apatite,magnetite and zircon.Zircon U-Pb dating indicates that the Xiaolianghou granite was emplaced at 247.5±0.62 Ma.Additionally,the adakitic characteristics of the Nianzi,Xiawopu and Xiaolianghou granitic intrusions,such as high Sr and Ba contents and high ratios of Sr/Y and(La/Yb)N,combined with negative Sr-Nd and Lu-Hf isotopes(87Sr/86Sr)i=0.705681–0.7057433,εNd(t)=−21.98 to−20.97,zirconεHf(t)=−20.26 to−9.92,as well as the I-type granite features of high SiO_(2),Na_(2)O and K_(2)O/Na_(2)O ratios,enriched Rb,K,Sr and Ba,along with depleted Th,U,Nb,Ta,P and Ti,suggest that the Nianzi granitic unit was mainly derived from the partial melting of a thickened lower crust containing hydrous,calc-alkaline to high-K calc-alkaline,mafic to intermediate metamorphic rocks.In light of these parameters,we further integrate our data with previous studies and conclude that the Nianzi granitic unit was generated in a post-collisional extensional environment during the Early Triassic.展开更多
The Triassic granitoids in Central Tianshan play a key role in determining the petrogenesis and tectonic evolution on the southern margin of the Central Asian orogenic belt.In this study,we present SHRIMP zircon U-Pb ...The Triassic granitoids in Central Tianshan play a key role in determining the petrogenesis and tectonic evolution on the southern margin of the Central Asian orogenic belt.In this study,we present SHRIMP zircon U-Pb ages,Hf isotopic and geochemical data on the Xingxingxia biotite granite,amazonite granite and granitic pegmatite in Central Tianshan,NW China.Zircon U-Pb dating yielded formation ages of 242 Ma for the biotite granite and 240 Ma for the amazonite granite.These granitoid rocks have high K_(2)O with low MgO and CaO contents.They are enriched in Nb,Ta,Hf and Y,while being depleted in Ba and Sr,showing flat HREE patterns and negative Eu anomalies.They have typical A-type granite geochemical signatures with high Ga/A_(1)(8–13)and TFeO/(TFeO+MgO)ratios,showing an A_(2) affinity for biotite granite and an A_(1) affinity for amazonite granite and granitic pegmatite.Zircon ε_(Hf)(t)values of the granitoids are 0.45–2.66,with Hf model ages of 0.99–1.17 Ga.This suggests that these A-type granites originated from partial melting of the lower crust.We propose that Xingxingxia Triassic A-type granites formed under lithospheric extension from post-orogenic to anorogenic intraplate settings and NE-trending regional strike-slip fault-controlled magma emplacement in the upper crust.展开更多
The North Qinling Orogenic Belt(NQOB)is a composite orogenic belt in central China.It started evolving during the Meso-Neoproterozoic period and underwent multiple stages of plate subduction and collision before enter...The North Qinling Orogenic Belt(NQOB)is a composite orogenic belt in central China.It started evolving during the Meso-Neoproterozoic period and underwent multiple stages of plate subduction and collision before entering intra-continental orogeny in the Late Triassic.The Meso-Cenozoic intra-continental orogeny and tectonic evolution had different responses in various terranes of the belt,with the tectonic evolution of the middle part of the belt being particularly controversial.The granites distributed in the Dayu and Kuyu areas in the middle part of the NQOB can provide an important window for revealing the geodynamic mechanisms of the NQOB.The main lithology of Dayu and Kuyu granites is biotite monzogranite,and the zircon U-Pb dating yielded intrusive ages of 151.3±3.4 Ma and 147.7±1.5 Ma,respectively.The dates suggest that the biotite monzogranite were formed at the end of the Late Jurassic.The whole-rock geochemistry analysis shows that the granites in the study areas are characterized by slightly high SiO_(2)(64.50-68.88 wt%)and high Al_(2)O_(3)(15.12-16.24 wt%)and Na_(2)O(3.55-3.80 wt%)contents.They are also enriched in light rare earth elements,large ion lithophile elements(e.g.,Ba,K,La,Pb and Sr),and depleted in high field strength elements(HFSEs)(e.g.,Ta,Nb,P and Ti).Additionally,the granites have weakly negative-slightly positive Eu anomalies(δEu=0.91-1.19).Zircon Lu-Hf isotopic analysis showedε_(Hf)(t)=-6.1--3.8,and the two-stage model age is T_(2DM(crust))=1.5-1.6 Ga.The granites in the study areas are analyzed as weak peraluminous high-K calc-alkaline I-type granites.They formed by partial melting of the thickened ancient lower crust,accompanied by the addition of minor mantle-derived materials.During magma ascent,they experienced fractional crystallization,with residual garnet and amphibole for a certain proportion in the magma source region.Comprehensive the geotectonic data suggest that the end of the Late Jurassic granite magmatism in the Dayu and Kuyu areas represents a compression-extension transition regime.It may have been a response to multiple tectonic mechanisms,such as the late Mesozoic intra-continental southward subduction of the North China Craton and the remote effect of the Paleo-Pacific Plate subduction.展开更多
The field and microstructural features coupled with mineral chemical data from microgranular enclave(ME)and host Mesoproterozoic Kanigiri granite(KG)pluton of Nellore Schist Belt(NSB),Southeastern India,have been docu...The field and microstructural features coupled with mineral chemical data from microgranular enclave(ME)and host Mesoproterozoic Kanigiri granite(KG)pluton of Nellore Schist Belt(NSB),Southeastern India,have been documented in order to infer the likely processes responsible for the origin and evolution of ME and host KG magma.The ME and host KG bear the same mineral assemblages barring the KG which does not contain amphibole;however,they are modally disequilibrated.The ME in KG is originated due to multiple intrusions of ME magmas into the crystallizing host KG magma chamber.Field and textural features indicate the dynamic magma flow,mingling,and undercooling of the ME against a relatively cooler surface of host KG magma.The presence of NSB country rock xenoliths and its diffuse boundaries suggest the intrusive relation and marginal assimilation by the intruding KG magma.The occasional cumulate texture in the ME appears to have formed by the accumulation of early-formed minerals that crystallized rapidly in the ME magma globules.The ME shows the magmatically deform features developed due to the flowage and erosion by the subsequent intrusions of ME magma pulses into the crystallizing host KG magma chamber.The ME amphiboles show unusual composition as ferro-edenitic hornblende to potassian-hastingsitic hornblende,that crystallized in the subalkaline-alkaline transition,low fO_(2)(reducing to mildly oxidizing)magma.The unusual extremely low Mg/Mg+Fe^(t)=0.015(avg.)of ME amphiboles may be related to the changing physico-chemical(P,T,fO_(2),and H_(2)O)condition of the ME magma or they might have crystallized in equilibrium with more evolved KG magma.The KG(FeOt/MgO=37.04,avg.)and ME(FeO~t/MgO=77.72,avg.)biotites are siderophyllite,and buffered between QFM and NNO syn-crystallizing in the water undersaturated(H_(2O)≈3.58 wt.%in KG;≈3.53wt.%in ME),alkaline anorogenic(A-type)host magmas that were emplaced at mid-crustal(4–5 kbar;17 km)depth.Field,microtextural and mineral chemical evidences suggest that the alkaline KG magma originated from crustal source and evolved through synchronous fractionation,mixing,and mingling with coeval ME magmas in the KG magma chamber.展开更多
Tectonic processes involving amalgamations of microblocks along zones of ocean closure represented by granite-greenstone belts(GGB) were fundamental in building the Earth's early continents. The crustal growth and...Tectonic processes involving amalgamations of microblocks along zones of ocean closure represented by granite-greenstone belts(GGB) were fundamental in building the Earth's early continents. The crustal growth and cratonization of the North China Craton(NCC) are correlated to the amalgamation of microblocks welded by 2.75-2.6 Ga and ~2.5 Ga GGBs. The lithological assemblages in the GGBs are broadly represented by volcano-sedimentary sequences, subduction-collision related granitoids and bimodal volcanic rocks(basalt and dacite) interlayered with minor komatiites and calc-alkalic volcanic rocks(basalt, andesite and felsic rock). The geochemical features of meta-basalts in the major GGBs of the NCC display affinity with N-MORB, E-MORB, OIB and calc-alkaline basalt, suggesting that the microblocks were separated by oceanic realm. The granitoid rocks display arc signature with enrichment of LILE(K,Rb, Sr, Ba) and LREE, and depletion of HFSE(Nb, Ta, Th, U, Ti) and HREE, and fall in the VAG field. The major mineralization includes Neoarchean BIF-type iron and VMS-type Cu-Zb deposits and these,together with the associated supracrustal rocks possibly formed in back-arc basins or arc-related oceanic slab subduction setting with or without input from mantle plumes. The 2.75-2.60 Ga TTG rocks,komatiites, meta-basalts and metasedimentary rocks in the Yanlingguan GGB are correlated to the upwelling mantle plume with eruption close to the continental margin within an ocean basin. The volcanosedimentary rocks and granitoid rocks in the late Neoarchean GGBs display formation ages of 2.60-2.48 Ga, followed by metamorphism at 2.52-2.47 Ga, corresponding to a typical modern-style subduction-collision system operating at the dawn of Proterozoic. The late Neoarchean komatiite(Dongwufenzi GGB), sanukitoid(Dongwufenzi GGB and Western Shandong GGB), BIF(Zunhua GGB) and VMS deposit(Hongtoushan-Qingyuan-Helong GGB) have closer connection to a combined process of oceanic slab subduction and mantle plume. The Neoarchean cratonization of the NCC appears to have involved two stages of tectonic process along the 2.75-2.6 Ga GGB and ~2.5 Ga GGBs, the former involve plume-arc interaction process, and the latter involving oceanic lithospheric subduction, with or without arcplume interaction.展开更多
The main types of intrusive rocks in the Kelameili-Harlik Hercynian orogenic belt include calc-alkaline granites, diabase dykes, kaligranites and alkaline granites. Investigation in field geology, petrology, mineralog...The main types of intrusive rocks in the Kelameili-Harlik Hercynian orogenic belt include calc-alkaline granites, diabase dykes, kaligranites and alkaline granites. Investigation in field geology, petrology, mineralogy and geochemistry shows that the calc-alkaline granites belong to the syntexis-type (or I-type) and were formed in a pre-collisional magmatic arc environment. In consideration of the fact that kaligranites have many features of alkaline granites with higher consolidation temperatures than the calc-alkaline granites and show a discontinuity of minor element and REE evolution in respect to the calc-alkaline granites, they could not have been derived by differentiation of magmas for the calc-alkaline granites, but are likely to have been generated in an environment analogous to that for alkaline granites. The triplet of basic dyke swarms, kaligranites and alkaline granites could be regarded as a prominent indication of the initial stage of post-collisional delamination and extension. These rocks might have originated from underplating and intraplating of mantle-derived magmas at varying levels with varying degrees of partial melting, mixing, and interchange of crustal and mantle materials展开更多
Thus far, our understanding of the emplacement of Xuebaoding granite and the occurrence and evolution of the Songpan-Garze Orogenic Belt has been complicated by differing age spectra results. Therefore, in this study,...Thus far, our understanding of the emplacement of Xuebaoding granite and the occurrence and evolution of the Songpan-Garze Orogenic Belt has been complicated by differing age spectra results. Therefore, in this study, the ^40Ar/^39Ar and sensitive high resolution ion micro-probe (SHRIMP) U-Pb dating methods were both used and the results compared, particularly with respect to dating data for Pankou and Pukouling granites from Xuebaoding, to establish ages that are close to the real emplacements. The results of SHRIMP U-Pb dating for zircon showed a high amount of U, but a very low value for Th/U. The high U amount, coupled with characteristics of inclusions in zircons, indicates that Xuebaoding granites are not suitable for U-Pb dating. Therefore, muscovite in the same granite samples was selected for ^40Ar/^39Ar dating. The ^40Ar/^39Ar age spectrum obtained on bulk muscovite from Pukouling granite in the Xuebaoding, gave a plateau age of 200.1±1.2 Ma and an inverse isochron age of 200.6±1.2 Ma. The 4^40Ar/^39Ar age spectrum obtained on bulk muscovite from Pankou granite in the Xuebaoding gave another plateau age of 193.4±1.1 Ma and an inverse isochron age of 193.7±1.1 Ma. The ^40Ar/^36Ar intercept of 277.0±23.4 (2σ) was very close to the air ratio, indicating that no apparent excess argon contamination was present. These age dating spectra indicate that both granites were emplaced at 200.6±1.3 Ma and 193.7±1.1 Ma, respectively. Through comparison of both dating methods and their results, we can conclude that it is feasible that the muscovite in the granite bearing high U could be used for ^40Ar/^39Ar dating without extra Ar. Based on this evidence, as well as the geological characteristics of the Xuebaoding W-Sn-Be deposit and petrology of granites, it can be concluded that the material origin of the Xuebaoding W-Sn-Be deposit might partially originate from the Xuebaoding granite group emplacement at about 200 Ma. Moreover, compared with other granites and deposits distributed in various positions in the Songpan-Garze Orogenic Belt, the Xuebaoding emplacement ages further show that the main rare metal deposits and granites in peripheral regions occurred earlier than those in the inner Songpan-Garze. Therefore, ^40Ar/^39Ar dating of Xuebaoding granite will lay a solid foundation for studying the occurrence and evolution of granite and rare earth element deposits in the Songpan-Garze Orogenic Belt.展开更多
Whole-rock Pb isotopic compositions of the high-pressure (HP) metamorphic rocks, consisting of two-mica albite gneisses and eclogites, and foliated granites from the HP metamorphic unit of the Tongbai-Dabie orogenic b...Whole-rock Pb isotopic compositions of the high-pressure (HP) metamorphic rocks, consisting of two-mica albite gneisses and eclogites, and foliated granites from the HP metamorphic unit of the Tongbai-Dabie orogenic belt are firstly reported in this paper. The results show that the HP metamorphic rocks in different parts of this orogenic belt have similar Pb isotopic compositions. The two- mica albite gneisses have 206 Pb/ 204 Pb=17.657-18.168, 207 Pb/ 204 Pb=15.318-15.573, 208 Pb/ 204 Pb=38.315-38.990, and the eclogites have 206 Pb/ 204 Pb=17.599-18.310, 207 Pb/ 204 Pb=15.465- 15.615 , 208 Pb/ 204 Pb=37.968-39.143. The HP metamorphic rocks are characterized by upper crustal Pb isotopic composition. Although the Pb isotopic composition of the HP metamorphic rocks partly overlaps that of the ultrahigh-pressure (UHP) metamorphic rocks, as a whole, the former is higher than the latter. The high radiogenic Pb isotopic composition for the HP metamorphic rocks confirms that the subducted Yangtze continental crust in the Tongbai-Dabie orogenic belt has the chemical structure of increasing radiogenic Pb isotopic composition from lower crust to upper crust. The foliated granites, intruded in the HP metamorphic rocks post the HP/UHP metamorphism, have 206 Pb/ 204 Pb=17.128-17.434, 207 Pb/ 204 Pb=15.313-15.422 and 208 Pb/ 204 Pb=37.631-38.122, which are obviously different from the Pb isotopic compositions of the HP metamorphic rocks but similar to those of the UHP metamorphic rocks and the foliated garnet-bearing granites in the UHP unit. This shows that the foliated granites from the HP and UHP units have common magma source. Combined with the foliated granites having the geochemical characteristics of A-type granites, it is suggested that the magma for the foliated granites in the UHP and HP unit would be derived from the partial melting of the retrometamorphosed UHP metamorphic rocks exhumed into middle to lower crust, and partial magmas were intruded into the HP unit.展开更多
The Xingmeng Orogenic Belt evolved through a long-lived orogeny involving multiple episodes of subduction and accretion.However,there is a debate on its tectonic evolution during the Late Paleozoic.Here,we report geoc...The Xingmeng Orogenic Belt evolved through a long-lived orogeny involving multiple episodes of subduction and accretion.However,there is a debate on its tectonic evolution during the Late Paleozoic.Here,we report geochemical,geochronological,and isotopic data from strongly peraluminous granites and gabbro-diorites from the Sunidzuoqi-Xilinhot region.Zircon U-Pb ages suggest that the intrusive rocks were emplaced during the Early Carboniferous(333-322 Ma).The granites exhibit geochemical characteristics similar to S-type granites,with high SiO_(2)(72.34-76.53 wt.%),Al_(2)O_(3)(12.45-14.65 wt.%),and A/CNK(1.07-1.16),but depleted Sr,Nb,and Ta contents.They exhibit positiveε_(Nd)(t)andε_(Hf)(t)values(-0.3 to 2.8 and 2.7-5.7,respectively)and young Nd and Hf model ages(T_(DM2)(Nd)=853-1110 Ma and T_(DM2)(Hf)=975-1184 Ma),suggesting that they may be the partial melting products of heterogeneous sources with variable proportions of pelite,psammite,and metabasaltic rocks.The meta-gabbro-diorites from the Maihantaolegai pluton have low SiO_(2)(47.06-53.49 wt.%)and K_2O(0.04-0.99 wt.%)contents,and demonstrate slight light rare earth element(REE)depletion in the chondritenormalized REE diagrams.They have high zirconε_(Hf)(t)values(14.41-17.34)and young Hf model ages(T_(DM2)(Hf)=230-418 Ma),indicating a more depleted mantle source.The variations of the Sm/Yb and La/Sm ratios can thus be used to assess the melting degree of the mantle source from 5%to 20%,suggesting a quite shallow mantle melting zone.We propose that the petrogenesis and distribution of the strongly peraluminous granites and gabbro-diorites,as well as the tectonic architecture of the region,can be explained by a ridge subduction model.Based on these results,and previous studies,we suggest a southward ridge subduction model for the Sunidzuoqi-Xilinhot region.展开更多
An analysis of trace elements and isotopic geochemistry suggest that the ore-forming materials of gold deposits in the Jiaodong granite-greenstone belt have multiple sources, especially the mantle source. Seismic wave...An analysis of trace elements and isotopic geochemistry suggest that the ore-forming materials of gold deposits in the Jiaodong granite-greenstone belt have multiple sources, especially the mantle source. Seismic wave, magnetic and gravity fields show that the crust-mantle structure and its coupling mechanism are the fundamental dynamic causes for the exchange and accumulation of materials and energy in the metallogenic system. Considering the evolution history of the structural setting, the tectono-metallogenic dynamics model of the area can be summarized as follows: (1) occurrence of the greenstone belt during the Archean-Proterozoic-the embryonic form of Au-source system; (2) stable tectonic setting in the Paleozoic-an intermittence in gold mineralization; (3) intensive activation and reformation of the greenstone belt in the Mesozoic-tectono-mineralization and tectono-diagensis; (4) posthumous structural activity in the Cenozoic-destruction of orebodies in the later stage. In the middle and late Indosinian, the Tancheng-Lujiang fault zone cut deeply into the upper mantle so that the ore-bearing fluids migrated to higher layers through the crust-mantle interaction, resulting in alteration and mineralization.展开更多
The Nandan-Hechi metallogenetic belt is the most important tin-polymetallic producing district in China, and is the location of the Dachang super-large tin deposit. Based on the detailed field investigation and isotop...The Nandan-Hechi metallogenetic belt is the most important tin-polymetallic producing district in China, and is the location of the Dachang super-large tin deposit. Based on the detailed field investigation and isotopic data, the stages of magmatic activity in the Nandan-Hechi metallogenetic belt have been lined out in this paper. Through the study about the geochemical characteristics of different granites, and by using ω(Al2O3)-ω(SiO2), ω(TFeO)/[ω(TFeO)+ω(MgO)]-ω(SiO2), AFM, ACF and Rb-Yb+Ta, Rb-Y+Nb, Ta-Yb, Nb-Y discrimination diagrams in combination with regional geological setting analysis, the authors carried out analyses about the structural environment for the formation of the granites, and discussed the structural environment and dynamic setting for the large scale mineralization in this area. Our study indicates that the majority of the granites in Nandan-Hechi metallogenetic belt belong to the POG type, while the later stage alaskite belongs to the RRG+CEUG type. The granites were formed at the stage of structural transformation from postorogenic phase to intraplate setting. But the major structural environment is characterized by steady regional extension. The formation age for the granites coincides with the time for this transformation, and this translation environment is favored for large-scale metallogenesis.展开更多
We performed geochronological and geochemical analyses of the A-type granite in the Hongol area, central Inner Mongolia, to determine its age, petrogenesis and tectonic setting, which are significant for clarifying th...We performed geochronological and geochemical analyses of the A-type granite in the Hongol area, central Inner Mongolia, to determine its age, petrogenesis and tectonic setting, which are significant for clarifying the Late Paleozoic tectonic evolution of the Xing’an Mongolian Orogenic Belt(XMOB). The rock type of the A-type granite in the Hongol area is alkali-feldspar granite, and it constitutes a western part of the Baiyinwula-Dongujimqin A-type granite belt. Zircon U-Pb geochronology yieldsPb/U ages ranging from 293 to 286 Ma for the alkali-feldspar granite, indicating this granitic pluton formed in the Early Permian. The alkali-feldspar granite is high in silica(SiO=75.13 wt%-80.17 wt%), aluminum(AlO=10.59 wt%-13.17 wt%) and alkali(NaO+KO=7.33 wt%-9.11 wt%), and low in MgO(0.08 wt%-0.39 wt%) and CaO(0.19 wt%-0.70 wt%). It is obviously enriched in LILEs such as Rb, Th and K,depleted in HFSEs such as Nb, Ti, La and Ce, with pronounced negative anomalies of Nb, Ti, P, Eu, Sr and Ba. Its Sr-Nd-Pb isotopic compositions show positive ε(t)(+0.72-+3.08), low T(805-997 Ma),and high radioactive Pb with(Pb/Pb)of 18.710-19.304,(Pb/Pb)of 15.557-15.604 and(Pb/Pb)of 37.887-38.330. Petrological characteristics and geochemical data suggest that the alkalifeldspar granite in the Hongol area belongs to aluminous A-type granite. This A-type granite formed in a post-collisional extensional setting and was generated by the partial melting of felsic rocks in the middlelower crust resulting from post-collisional slab breakoff. It is suggested that the Paleo-Asian Ocean was closed before the Permian in central Inner Mongolia.展开更多
The Huaniushan granite is located at the Beishan orogenic belt, northwestern China. At the contact zone between the granite and marble, a hydrothermal Pb-Zn and skarn Au deposit is formed. LA-ICP-MS zircon U-Pb dating...The Huaniushan granite is located at the Beishan orogenic belt, northwestern China. At the contact zone between the granite and marble, a hydrothermal Pb-Zn and skarn Au deposit is formed. LA-ICP-MS zircon U-Pb dating yielded a weighted mean 206Pb/238U age of 229.5±2.6 Ma (MSDW=0.93) for the Huaniushan granite, imply-ing its Late Triassic intrusion. Geochemistry analyses show that the Huaniushan granite is enriched in Si, K, Na, and REE, and depleted in Mg and Ca, with contents of SiO2 (70.8% to 74.4%), Na2O+K2O (8.8% to 10.2%), CaO (0.93% to 1.44%), and MgO (0.14% to 0.48%). REE is characterized by obvious negative Eu anomaly. Rb, Th, U, K, Pb, Nb, Zr and Hf elements are rich in the granite while Ba, Sr, P, Ti and Eu are deplete. The granite has a high (Zr+Nb+Ce+Y) abundance and 104 Ga/Al ratios. Petrology, major and trace elements data all indicate that the Hua-niushan granite is A-type granite which intruded in a post-collisional extensional tectonic setting. The magma was dominantly sourced from partial melting of crustal intermediate-felsic igneous rocks. Intensive magmatic activities and Au-Cu-Mo mineralization occurred throughout the Beishan orogenic belt during the period from ca. 240 to 220 Ma.展开更多
Zircon SHRIMP ages of the Aolaoshan granite on the south margin of the QilianMts. range from 445 + - 15.3 to 496 + - 7.6 Ma (averaging 473 Ma), belonging to the EarlyOrdovician. Geochemically, the granite is similar t...Zircon SHRIMP ages of the Aolaoshan granite on the south margin of the QilianMts. range from 445 + - 15.3 to 496 + - 7.6 Ma (averaging 473 Ma), belonging to the EarlyOrdovician. Geochemically, the granite is similar to I-type granite and, tectonically, was formed inan island-arc environment based on relevant diagrams for structural discriminations. Consideringalso the regional geology, the authors suggest that the granite is part of an ultrahigh-pressurebelt on the south margin of the Qilian Mts. and that its formation bears a close relationship tothis belt.展开更多
The East Kunlun Orogenic Belt(EKOB)in northeast margin of the Qinghai-Tibetan Plateau is an important part of the Central Orogenic System(COS).During the long-time geological evolution,complicated tectono
The Qimantag in the East Kunlun Orogenic Belt has widespread Triassic magmatic rocks that have received scant attention,with an unresolved issue relating to its petrogenesis and geodynamics.In this paper,we used zirco...The Qimantag in the East Kunlun Orogenic Belt has widespread Triassic magmatic rocks that have received scant attention,with an unresolved issue relating to its petrogenesis and geodynamics.In this paper,we used zircon U-Pb-Hf isotopes and whole-rock geochemistry to trace the petrogenesis and tectonic settings of the moyite and monzogranite from the Qimantag Alananshan,East Kunlun.The moyite and monzogranite are silicic(SiO_(2-)~69.9-76.41%),highly alkali(Na_(2)O+K_(2)O~7.29 to8.96 wt.%),with Mg^(#)about 10.4-30.34,indicative of a high-K calc-alkaline rock series.The rare earth element patterns diagram is right-leaning,with a negative Eu anomaly(δEu=0.31-0.68).They are enriched in Rb,K,and light rare earth elements but depleted in Nb,Ta,and Ti,with abundant amphibole,typical of I-type granites.U-Pb on zircon constrained the emplacement of the moyite at 223.9±2.6 Ma and monzogranite at 226.9±2.9 Ma.TheεHf(t)values range from-2.8 to+0.1 except for one outlier value of-7.0,corresponding two-stage model age of 1249-1437 Ma.Our combined geochemical and isotopic results indicate that the moyite and monzogranite were derived from partial melting of the lower thicken crust with the contribution from the older basement materials.These rocks formed in a post-collision setting that is transitional between compressive collision and extension orogeny.展开更多
The central part of South Mongolia,located to the north of the Solonker Suture,is a key region for studying the late Paleozoic tectonic evolution of the Central Asian Orogenic Belt(CAOB).Voluminous late Paleozoic gran...The central part of South Mongolia,located to the north of the Solonker Suture,is a key region for studying the late Paleozoic tectonic evolution of the Central Asian Orogenic Belt(CAOB).Voluminous late Paleozoic granitic rocks,especially of Carboniferous age,were intruded in this area.However,these granitoids have not been well studied and there is a lack of precise ages and isotopic data.This has hampered our understanding of the tectonic evolution of southeastern Mongolia,and even the entire CAOB.In this paper,we provide new U-Pb isotopic ages and geochemical analyses for these Carboniferous granites.One granite from the Ulaanbadrakh pluton yielded a zircon U-Pb age of 326 Ma,which indicates emplacement in the Early Carboniferous,and three other granites from the Khatanbulag region gave zircon U-Pb ages of 316 Ma,315 Ma,and 311 Ma,which indicate emplacement in the Late Carboniferous.The Early Carboniferous granite has SiO2 contents of 70.04–70.39 wt%and K_(2)O+Na_(2)O contents of 6.48–6.63 wt%,whereas the Late Carboniferous granites have more variable compositions(SiO2=65.29–77.91 wt%and K2O+Na2O=5.30–7.27 wt%).All the granites are weakly-peraluminous I-types that are relatively enriched in U,Th,K,Zr,Hf,and LREEs.The whole rock Sr-Nd and zircon in situ Lu-Hf isotope analyses for the Early Carboniferous granite gave positive values ofεNd(t)(2.87)andεHf(t)(4.31–12.37)with young Nd(TDM=860 Ma)and Hf(TDMc=1367–637 Ma)two-stage model ages,indicating derivation from juvenile crustal material.In contrast,the Late Carboniferous granites had more diverse values ofεNd(t)(–4.03 to 2.18)andεHf(t)(–12.69 to 5.04)with old Nd(TDM=1358–1225 Ma)and Hf(TDMc=2881–1294 Ma)depleted mantle two-stage model ages,suggesting derivation from remelting of Precambrian basement.Based on the existing results,the tectonic setting of the Late Carboniferous granites in the central part of South Mongolia is known for its diversity,and this paper believes that the tectonic background of the carboniferous granite records the tectonic transition from a continental-margin-arc to a postcollisional extensional setting during the Late Carboniferous–Permian.展开更多
The A-type granites with highly positiveε_(Nd)(t)values in the West Junggar,Central Asian Orogenic Belt(CAOB),have long been perceived as a group formed under the same tectonic and geodynamic setting,magmatic sourceq...The A-type granites with highly positiveε_(Nd)(t)values in the West Junggar,Central Asian Orogenic Belt(CAOB),have long been perceived as a group formed under the same tectonic and geodynamic setting,magmatic sourceq and petrogenetic model.Geological evidence shows that these granites occurred at two different tectonic units related to the southeastern subduction of Junggar oceanic plate:the Hongshan and Karamay granites emplaced in the southeast of West Junggar in the Baogutu continental arc;whereas the Akebasitao and Miaoergou granites formed in the accretionary prism.Here the authors present new bulk-rock geochemistry and Sr-Nd isotopes,zircon U-Pb ages and Hf-O isotopes data on these granites.The granites in the Baogutu continental arc and accretionary prism contain similar zirconε_(Hf)(t)values(+10.9 to+16.2)and bulk-rock geochemical characteristics(high SiO_(2)and K_(2)O contents,enriched LILEs(except Sr),depleted Sr,Ta and Ti,and negative anomalies in Ce and Eu).The Hongshan and Karamay granites in the Baogutu continental arc have older zircon U-Pb ages(315-305 Ma)and moderate^(18)O enrichments(δ^(18)_(O_(zircon))=+6.41‰-+7.96‰);whereas the Akebasitao and Miaoergou granites in the accretionary prism have younger zircon U-Pb ages(305-301 Ma)with higher^(18)O enrichments(δ^(18)_(O_(zircon))=+8.72‰-+9.89‰).The authors deduce that the elevated^(18)O enrichments of the Akebasitao and Miaoergou granites were probably inherited from low-temperature altered oceanic crusts.The Akebasitao and Miaoergou granites were originated from partial melting of low-temperature altered oceanic crusts with juvenile oceanic sediments below the accretionary prism.The Hongshan and Karamay granites were mainly derived from partial melting of basaltic juvenile lower crust with mixtures of potentially chemical weathered ancient crustal residues and mantle basaltic melt(induced by hot intruding mantle basaltic magma at the bottom of the Baogutu continental arc).On the other hand,the Miaoergou charnockite might be sourced from a deeper partial melting reservoir under the accretionary prism,consisting of the low-temperature altered oceanic crust,juvenile oceanic sediments,and mantle basaltic melt.These granites could be related to the asthenosphere's counterflow and upwelling,caused by the break-off and delamination of the subducted oceanic plate beneath the accretionary prism Baogutu continental arc in a post-collisional tectonic setting.展开更多
Greenstone rocks, which include Banded Iron Formations (BIFs), tuffs, volcanic flows (basalt, andesite and rhyolite), and clastic sedimentary rocks (shale-mudstone, greywacke-sandstone and conglomerate), crop out arou...Greenstone rocks, which include Banded Iron Formations (BIFs), tuffs, volcanic flows (basalt, andesite and rhyolite), and clastic sedimentary rocks (shale-mudstone, greywacke-sandstone and conglomerate), crop out around Geita Hills and are flanked by granites and granodiorites. BIFs and tuffs occupy larger area than other lithological units, which crop out as patches. Structural analysis indicates that layers of green-stone rocks are folded and display a regional fold axis with an attitude of 320o/40o. Low-grade metamorphic mineral assemblages (actinolite-epidote-chlorite in basalts and muscovite-epidote-chlorite in granitoids) are common in these rocks;this indicates a regional metamorphism at greenschist facies. However, BIFs and basalts are locally metamorphosed to epidote-amphibolite and amphibolite facies. Basalts belong to the tholeiite series whereas granites, diorites and rhyolites belong to the calcalkaline series. Chondrite normalized rare earth element pattern of basalt is flat and plot slightly below the average N-MORB values suggesting the enrichment of the light rare earth elements, which means that mantle magma source was an E-MORB. Granitoids and rhyolites have strong affinities to the continental arc source magma displaying strong enrichments in the LREEs with (La/Sm)N values ranging between 2.53 and 3.95 in rhyolites and between 4.08 and 5.40 in granitoids. The granitoids are classified as the I-type synorogenic metaluminous granites and granodiorites. Geochemical signatures suggest that the Geita Hills basalts erupted at the enriched mid ocean ridge setting of the back arc setting, and the granites, granodiorite and rhyolite formed in a volcanic arc setting particularly the continental arc.展开更多
As the wall rock of the Aketas gold deposit,the Aketas granite is about 45 km away from Fuyun County, Xinjiang Province. The zircon weighted mean U–Pb age of the Aketas granite is 309.0 ± 4.7 Ma, indicating that...As the wall rock of the Aketas gold deposit,the Aketas granite is about 45 km away from Fuyun County, Xinjiang Province. The zircon weighted mean U–Pb age of the Aketas granite is 309.0 ± 4.7 Ma, indicating that the Aketas granite was emplaced during the late Carboniferous. The Aketas granite belongs to the High-K calcalkaline series, with Si O2 content from 63.00 to 68.20 %,K2 O content from 3.06 to 4.49 % and Na2 O content from4.14 to 6.02 %. The Alkaline Ratio(AR) of the Aketas granite is high, from 1.89 to 3.47, and is 2.95 on average.The Aketas granite has lowPREE(92.42–122.73 ppm)and highPLREE/PHREE ratios(6.54–11.88). For the trace elements, the Aketas granite is enriched in LILE(Rb,U, Th, K) and incompatible elements, and marked depleted in HFSE(Nb, Ta, P, Ti). The geochemical characteristics of the Aketas granite suggest that it is a typical I-type and volcanic arc granite, and that the crystallization of clinopyroxene and hornblende is notable during the magmatic evolution. In combination with the regional tectonic studies, we propose that the emplacement of the Aketas granite implies the Altai and East Junggar area was still dominated by a subduction system at *309 Ma.展开更多
基金funded by the National Natural Science Foundation of China(41872232)the Beijing Geological Survey Project(PXM 2016-158203-000008,PXM 2018-158203-000014)the Beijing Innovation Studio(Urban Geology,Active Structure,and Monitoring).
文摘The Nianzi granite unit,which includes the Nianzi,Xiaolianghou and Xiawopu granitic intrusions,is a significant component of the northern part of the North China Craton(NCC)and is situated in the Yanshan fold and thrust belt(YFTB).However,there is still debate regarding the tectonic evolutionary history of the YFTB during the late Permian to Triassic period,specifically regarding the timing of subduction and collision between the NCC and the Paleo-Asian Ocean.The Nianzi granite unit exhibits unique petrological,geochronological and geochemical signatures that shed light on the tectonic evolutionary history of the YFTB.This study presents detailed petrology,whole-rock geochemistry,together with Sr-Nd isotopic,zircon U-Pb dating and Lu-Hf isotopic data of the granites within the Nianzi granite unit.Our findings demonstrate that the granites primarily consist of subhedral K-feldspar,plagioclase,quartz,minor biotite and hornblende,with accessory titanite,apatite,magnetite and zircon.Zircon U-Pb dating indicates that the Xiaolianghou granite was emplaced at 247.5±0.62 Ma.Additionally,the adakitic characteristics of the Nianzi,Xiawopu and Xiaolianghou granitic intrusions,such as high Sr and Ba contents and high ratios of Sr/Y and(La/Yb)N,combined with negative Sr-Nd and Lu-Hf isotopes(87Sr/86Sr)i=0.705681–0.7057433,εNd(t)=−21.98 to−20.97,zirconεHf(t)=−20.26 to−9.92,as well as the I-type granite features of high SiO_(2),Na_(2)O and K_(2)O/Na_(2)O ratios,enriched Rb,K,Sr and Ba,along with depleted Th,U,Nb,Ta,P and Ti,suggest that the Nianzi granitic unit was mainly derived from the partial melting of a thickened lower crust containing hydrous,calc-alkaline to high-K calc-alkaline,mafic to intermediate metamorphic rocks.In light of these parameters,we further integrate our data with previous studies and conclude that the Nianzi granitic unit was generated in a post-collisional extensional environment during the Early Triassic.
文摘The Triassic granitoids in Central Tianshan play a key role in determining the petrogenesis and tectonic evolution on the southern margin of the Central Asian orogenic belt.In this study,we present SHRIMP zircon U-Pb ages,Hf isotopic and geochemical data on the Xingxingxia biotite granite,amazonite granite and granitic pegmatite in Central Tianshan,NW China.Zircon U-Pb dating yielded formation ages of 242 Ma for the biotite granite and 240 Ma for the amazonite granite.These granitoid rocks have high K_(2)O with low MgO and CaO contents.They are enriched in Nb,Ta,Hf and Y,while being depleted in Ba and Sr,showing flat HREE patterns and negative Eu anomalies.They have typical A-type granite geochemical signatures with high Ga/A_(1)(8–13)and TFeO/(TFeO+MgO)ratios,showing an A_(2) affinity for biotite granite and an A_(1) affinity for amazonite granite and granitic pegmatite.Zircon ε_(Hf)(t)values of the granitoids are 0.45–2.66,with Hf model ages of 0.99–1.17 Ga.This suggests that these A-type granites originated from partial melting of the lower crust.We propose that Xingxingxia Triassic A-type granites formed under lithospheric extension from post-orogenic to anorogenic intraplate settings and NE-trending regional strike-slip fault-controlled magma emplacement in the upper crust.
基金substantially supported by the National Nature Science Foundation of China(Grant No.41872220)。
文摘The North Qinling Orogenic Belt(NQOB)is a composite orogenic belt in central China.It started evolving during the Meso-Neoproterozoic period and underwent multiple stages of plate subduction and collision before entering intra-continental orogeny in the Late Triassic.The Meso-Cenozoic intra-continental orogeny and tectonic evolution had different responses in various terranes of the belt,with the tectonic evolution of the middle part of the belt being particularly controversial.The granites distributed in the Dayu and Kuyu areas in the middle part of the NQOB can provide an important window for revealing the geodynamic mechanisms of the NQOB.The main lithology of Dayu and Kuyu granites is biotite monzogranite,and the zircon U-Pb dating yielded intrusive ages of 151.3±3.4 Ma and 147.7±1.5 Ma,respectively.The dates suggest that the biotite monzogranite were formed at the end of the Late Jurassic.The whole-rock geochemistry analysis shows that the granites in the study areas are characterized by slightly high SiO_(2)(64.50-68.88 wt%)and high Al_(2)O_(3)(15.12-16.24 wt%)and Na_(2)O(3.55-3.80 wt%)contents.They are also enriched in light rare earth elements,large ion lithophile elements(e.g.,Ba,K,La,Pb and Sr),and depleted in high field strength elements(HFSEs)(e.g.,Ta,Nb,P and Ti).Additionally,the granites have weakly negative-slightly positive Eu anomalies(δEu=0.91-1.19).Zircon Lu-Hf isotopic analysis showedε_(Hf)(t)=-6.1--3.8,and the two-stage model age is T_(2DM(crust))=1.5-1.6 Ga.The granites in the study areas are analyzed as weak peraluminous high-K calc-alkaline I-type granites.They formed by partial melting of the thickened ancient lower crust,accompanied by the addition of minor mantle-derived materials.During magma ascent,they experienced fractional crystallization,with residual garnet and amphibole for a certain proportion in the magma source region.Comprehensive the geotectonic data suggest that the end of the Late Jurassic granite magmatism in the Dayu and Kuyu areas represents a compression-extension transition regime.It may have been a response to multiple tectonic mechanisms,such as the late Mesozoic intra-continental southward subduction of the North China Craton and the remote effect of the Paleo-Pacific Plate subduction.
基金UGC-Dr.D.S.Kothari Postdoctoral FellowshipNo.F.4-2/2006(BSR)/ES/20-21/0005supported under a research grant[Mo ES/P.O.(Geo)/101(v)/2017]to SK。
文摘The field and microstructural features coupled with mineral chemical data from microgranular enclave(ME)and host Mesoproterozoic Kanigiri granite(KG)pluton of Nellore Schist Belt(NSB),Southeastern India,have been documented in order to infer the likely processes responsible for the origin and evolution of ME and host KG magma.The ME and host KG bear the same mineral assemblages barring the KG which does not contain amphibole;however,they are modally disequilibrated.The ME in KG is originated due to multiple intrusions of ME magmas into the crystallizing host KG magma chamber.Field and textural features indicate the dynamic magma flow,mingling,and undercooling of the ME against a relatively cooler surface of host KG magma.The presence of NSB country rock xenoliths and its diffuse boundaries suggest the intrusive relation and marginal assimilation by the intruding KG magma.The occasional cumulate texture in the ME appears to have formed by the accumulation of early-formed minerals that crystallized rapidly in the ME magma globules.The ME shows the magmatically deform features developed due to the flowage and erosion by the subsequent intrusions of ME magma pulses into the crystallizing host KG magma chamber.The ME amphiboles show unusual composition as ferro-edenitic hornblende to potassian-hastingsitic hornblende,that crystallized in the subalkaline-alkaline transition,low fO_(2)(reducing to mildly oxidizing)magma.The unusual extremely low Mg/Mg+Fe^(t)=0.015(avg.)of ME amphiboles may be related to the changing physico-chemical(P,T,fO_(2),and H_(2)O)condition of the ME magma or they might have crystallized in equilibrium with more evolved KG magma.The KG(FeOt/MgO=37.04,avg.)and ME(FeO~t/MgO=77.72,avg.)biotites are siderophyllite,and buffered between QFM and NNO syn-crystallizing in the water undersaturated(H_(2O)≈3.58 wt.%in KG;≈3.53wt.%in ME),alkaline anorogenic(A-type)host magmas that were emplaced at mid-crustal(4–5 kbar;17 km)depth.Field,microtextural and mineral chemical evidences suggest that the alkaline KG magma originated from crustal source and evolved through synchronous fractionation,mixing,and mingling with coeval ME magmas in the KG magma chamber.
基金jointly supported through the Foreign Expert grant from China University of Geosciences(Beijing)the Professorial position at the University of Adelaide, Australia to M.Santosh
文摘Tectonic processes involving amalgamations of microblocks along zones of ocean closure represented by granite-greenstone belts(GGB) were fundamental in building the Earth's early continents. The crustal growth and cratonization of the North China Craton(NCC) are correlated to the amalgamation of microblocks welded by 2.75-2.6 Ga and ~2.5 Ga GGBs. The lithological assemblages in the GGBs are broadly represented by volcano-sedimentary sequences, subduction-collision related granitoids and bimodal volcanic rocks(basalt and dacite) interlayered with minor komatiites and calc-alkalic volcanic rocks(basalt, andesite and felsic rock). The geochemical features of meta-basalts in the major GGBs of the NCC display affinity with N-MORB, E-MORB, OIB and calc-alkaline basalt, suggesting that the microblocks were separated by oceanic realm. The granitoid rocks display arc signature with enrichment of LILE(K,Rb, Sr, Ba) and LREE, and depletion of HFSE(Nb, Ta, Th, U, Ti) and HREE, and fall in the VAG field. The major mineralization includes Neoarchean BIF-type iron and VMS-type Cu-Zb deposits and these,together with the associated supracrustal rocks possibly formed in back-arc basins or arc-related oceanic slab subduction setting with or without input from mantle plumes. The 2.75-2.60 Ga TTG rocks,komatiites, meta-basalts and metasedimentary rocks in the Yanlingguan GGB are correlated to the upwelling mantle plume with eruption close to the continental margin within an ocean basin. The volcanosedimentary rocks and granitoid rocks in the late Neoarchean GGBs display formation ages of 2.60-2.48 Ga, followed by metamorphism at 2.52-2.47 Ga, corresponding to a typical modern-style subduction-collision system operating at the dawn of Proterozoic. The late Neoarchean komatiite(Dongwufenzi GGB), sanukitoid(Dongwufenzi GGB and Western Shandong GGB), BIF(Zunhua GGB) and VMS deposit(Hongtoushan-Qingyuan-Helong GGB) have closer connection to a combined process of oceanic slab subduction and mantle plume. The Neoarchean cratonization of the NCC appears to have involved two stages of tectonic process along the 2.75-2.6 Ga GGB and ~2.5 Ga GGBs, the former involve plume-arc interaction process, and the latter involving oceanic lithospheric subduction, with or without arcplume interaction.
基金This rescarch was jointly supported by the NationalNatural Science Foundation of China Grant No.4917-2094National Key Project No.305with additionalsuppor for the analyses from the Modern AnalysisCentre of Nanjing University.
文摘The main types of intrusive rocks in the Kelameili-Harlik Hercynian orogenic belt include calc-alkaline granites, diabase dykes, kaligranites and alkaline granites. Investigation in field geology, petrology, mineralogy and geochemistry shows that the calc-alkaline granites belong to the syntexis-type (or I-type) and were formed in a pre-collisional magmatic arc environment. In consideration of the fact that kaligranites have many features of alkaline granites with higher consolidation temperatures than the calc-alkaline granites and show a discontinuity of minor element and REE evolution in respect to the calc-alkaline granites, they could not have been derived by differentiation of magmas for the calc-alkaline granites, but are likely to have been generated in an environment analogous to that for alkaline granites. The triplet of basic dyke swarms, kaligranites and alkaline granites could be regarded as a prominent indication of the initial stage of post-collisional delamination and extension. These rocks might have originated from underplating and intraplating of mantle-derived magmas at varying levels with varying degrees of partial melting, mixing, and interchange of crustal and mantle materials
基金funded by the Major State Basic Research Program of China (2009CB421008)the Program for the New Century Excellent Talents in China(NCET-07-0771) +1 种基金the Program for Changjiang Scholars and Innovative Research Team in University,"111"Project(No.B07011)State Key Laboratory of Geological Processes and Mineral Resources(No.GPMR200838,GPMR0736)
文摘Thus far, our understanding of the emplacement of Xuebaoding granite and the occurrence and evolution of the Songpan-Garze Orogenic Belt has been complicated by differing age spectra results. Therefore, in this study, the ^40Ar/^39Ar and sensitive high resolution ion micro-probe (SHRIMP) U-Pb dating methods were both used and the results compared, particularly with respect to dating data for Pankou and Pukouling granites from Xuebaoding, to establish ages that are close to the real emplacements. The results of SHRIMP U-Pb dating for zircon showed a high amount of U, but a very low value for Th/U. The high U amount, coupled with characteristics of inclusions in zircons, indicates that Xuebaoding granites are not suitable for U-Pb dating. Therefore, muscovite in the same granite samples was selected for ^40Ar/^39Ar dating. The ^40Ar/^39Ar age spectrum obtained on bulk muscovite from Pukouling granite in the Xuebaoding, gave a plateau age of 200.1±1.2 Ma and an inverse isochron age of 200.6±1.2 Ma. The 4^40Ar/^39Ar age spectrum obtained on bulk muscovite from Pankou granite in the Xuebaoding gave another plateau age of 193.4±1.1 Ma and an inverse isochron age of 193.7±1.1 Ma. The ^40Ar/^36Ar intercept of 277.0±23.4 (2σ) was very close to the air ratio, indicating that no apparent excess argon contamination was present. These age dating spectra indicate that both granites were emplaced at 200.6±1.3 Ma and 193.7±1.1 Ma, respectively. Through comparison of both dating methods and their results, we can conclude that it is feasible that the muscovite in the granite bearing high U could be used for ^40Ar/^39Ar dating without extra Ar. Based on this evidence, as well as the geological characteristics of the Xuebaoding W-Sn-Be deposit and petrology of granites, it can be concluded that the material origin of the Xuebaoding W-Sn-Be deposit might partially originate from the Xuebaoding granite group emplacement at about 200 Ma. Moreover, compared with other granites and deposits distributed in various positions in the Songpan-Garze Orogenic Belt, the Xuebaoding emplacement ages further show that the main rare metal deposits and granites in peripheral regions occurred earlier than those in the inner Songpan-Garze. Therefore, ^40Ar/^39Ar dating of Xuebaoding granite will lay a solid foundation for studying the occurrence and evolution of granite and rare earth element deposits in the Songpan-Garze Orogenic Belt.
文摘Whole-rock Pb isotopic compositions of the high-pressure (HP) metamorphic rocks, consisting of two-mica albite gneisses and eclogites, and foliated granites from the HP metamorphic unit of the Tongbai-Dabie orogenic belt are firstly reported in this paper. The results show that the HP metamorphic rocks in different parts of this orogenic belt have similar Pb isotopic compositions. The two- mica albite gneisses have 206 Pb/ 204 Pb=17.657-18.168, 207 Pb/ 204 Pb=15.318-15.573, 208 Pb/ 204 Pb=38.315-38.990, and the eclogites have 206 Pb/ 204 Pb=17.599-18.310, 207 Pb/ 204 Pb=15.465- 15.615 , 208 Pb/ 204 Pb=37.968-39.143. The HP metamorphic rocks are characterized by upper crustal Pb isotopic composition. Although the Pb isotopic composition of the HP metamorphic rocks partly overlaps that of the ultrahigh-pressure (UHP) metamorphic rocks, as a whole, the former is higher than the latter. The high radiogenic Pb isotopic composition for the HP metamorphic rocks confirms that the subducted Yangtze continental crust in the Tongbai-Dabie orogenic belt has the chemical structure of increasing radiogenic Pb isotopic composition from lower crust to upper crust. The foliated granites, intruded in the HP metamorphic rocks post the HP/UHP metamorphism, have 206 Pb/ 204 Pb=17.128-17.434, 207 Pb/ 204 Pb=15.313-15.422 and 208 Pb/ 204 Pb=37.631-38.122, which are obviously different from the Pb isotopic compositions of the HP metamorphic rocks but similar to those of the UHP metamorphic rocks and the foliated garnet-bearing granites in the UHP unit. This shows that the foliated granites from the HP and UHP units have common magma source. Combined with the foliated granites having the geochemical characteristics of A-type granites, it is suggested that the magma for the foliated granites in the UHP and HP unit would be derived from the partial melting of the retrometamorphosed UHP metamorphic rocks exhumed into middle to lower crust, and partial magmas were intruded into the HP unit.
基金financially supported by the National Natural Science Foundation of China(Grant No.41702054)supported by the Research Funds for the Central Universities(Changfeng-Liu,2652018281)。
文摘The Xingmeng Orogenic Belt evolved through a long-lived orogeny involving multiple episodes of subduction and accretion.However,there is a debate on its tectonic evolution during the Late Paleozoic.Here,we report geochemical,geochronological,and isotopic data from strongly peraluminous granites and gabbro-diorites from the Sunidzuoqi-Xilinhot region.Zircon U-Pb ages suggest that the intrusive rocks were emplaced during the Early Carboniferous(333-322 Ma).The granites exhibit geochemical characteristics similar to S-type granites,with high SiO_(2)(72.34-76.53 wt.%),Al_(2)O_(3)(12.45-14.65 wt.%),and A/CNK(1.07-1.16),but depleted Sr,Nb,and Ta contents.They exhibit positiveε_(Nd)(t)andε_(Hf)(t)values(-0.3 to 2.8 and 2.7-5.7,respectively)and young Nd and Hf model ages(T_(DM2)(Nd)=853-1110 Ma and T_(DM2)(Hf)=975-1184 Ma),suggesting that they may be the partial melting products of heterogeneous sources with variable proportions of pelite,psammite,and metabasaltic rocks.The meta-gabbro-diorites from the Maihantaolegai pluton have low SiO_(2)(47.06-53.49 wt.%)and K_2O(0.04-0.99 wt.%)contents,and demonstrate slight light rare earth element(REE)depletion in the chondritenormalized REE diagrams.They have high zirconε_(Hf)(t)values(14.41-17.34)and young Hf model ages(T_(DM2)(Hf)=230-418 Ma),indicating a more depleted mantle source.The variations of the Sm/Yb and La/Sm ratios can thus be used to assess the melting degree of the mantle source from 5%to 20%,suggesting a quite shallow mantle melting zone.We propose that the petrogenesis and distribution of the strongly peraluminous granites and gabbro-diorites,as well as the tectonic architecture of the region,can be explained by a ridge subduction model.Based on these results,and previous studies,we suggest a southward ridge subduction model for the Sunidzuoqi-Xilinhot region.
基金This study is supported jointly by the National Natural Science Foundation of China(No.40172036)"the Key Project of Science and Technology Research"(No.01037)+1 种基金the“Trans-century Training Program for Outstanding Talents”Fund sponsored by the Ministry of Educationthe National Important Basic Research and Development Planning Program(No.1999043206).
文摘An analysis of trace elements and isotopic geochemistry suggest that the ore-forming materials of gold deposits in the Jiaodong granite-greenstone belt have multiple sources, especially the mantle source. Seismic wave, magnetic and gravity fields show that the crust-mantle structure and its coupling mechanism are the fundamental dynamic causes for the exchange and accumulation of materials and energy in the metallogenic system. Considering the evolution history of the structural setting, the tectono-metallogenic dynamics model of the area can be summarized as follows: (1) occurrence of the greenstone belt during the Archean-Proterozoic-the embryonic form of Au-source system; (2) stable tectonic setting in the Paleozoic-an intermittence in gold mineralization; (3) intensive activation and reformation of the greenstone belt in the Mesozoic-tectono-mineralization and tectono-diagensis; (4) posthumous structural activity in the Cenozoic-destruction of orebodies in the later stage. In the middle and late Indosinian, the Tancheng-Lujiang fault zone cut deeply into the upper mantle so that the ore-bearing fluids migrated to higher layers through the crust-mantle interaction, resulting in alteration and mineralization.
文摘The Nandan-Hechi metallogenetic belt is the most important tin-polymetallic producing district in China, and is the location of the Dachang super-large tin deposit. Based on the detailed field investigation and isotopic data, the stages of magmatic activity in the Nandan-Hechi metallogenetic belt have been lined out in this paper. Through the study about the geochemical characteristics of different granites, and by using ω(Al2O3)-ω(SiO2), ω(TFeO)/[ω(TFeO)+ω(MgO)]-ω(SiO2), AFM, ACF and Rb-Yb+Ta, Rb-Y+Nb, Ta-Yb, Nb-Y discrimination diagrams in combination with regional geological setting analysis, the authors carried out analyses about the structural environment for the formation of the granites, and discussed the structural environment and dynamic setting for the large scale mineralization in this area. Our study indicates that the majority of the granites in Nandan-Hechi metallogenetic belt belong to the POG type, while the later stage alaskite belongs to the RRG+CEUG type. The granites were formed at the stage of structural transformation from postorogenic phase to intraplate setting. But the major structural environment is characterized by steady regional extension. The formation age for the granites coincides with the time for this transformation, and this translation environment is favored for large-scale metallogenesis.
基金financially supported by projects of the China Geological Survey (Grant Nos. 1212011220458, 1212011220492)
文摘We performed geochronological and geochemical analyses of the A-type granite in the Hongol area, central Inner Mongolia, to determine its age, petrogenesis and tectonic setting, which are significant for clarifying the Late Paleozoic tectonic evolution of the Xing’an Mongolian Orogenic Belt(XMOB). The rock type of the A-type granite in the Hongol area is alkali-feldspar granite, and it constitutes a western part of the Baiyinwula-Dongujimqin A-type granite belt. Zircon U-Pb geochronology yieldsPb/U ages ranging from 293 to 286 Ma for the alkali-feldspar granite, indicating this granitic pluton formed in the Early Permian. The alkali-feldspar granite is high in silica(SiO=75.13 wt%-80.17 wt%), aluminum(AlO=10.59 wt%-13.17 wt%) and alkali(NaO+KO=7.33 wt%-9.11 wt%), and low in MgO(0.08 wt%-0.39 wt%) and CaO(0.19 wt%-0.70 wt%). It is obviously enriched in LILEs such as Rb, Th and K,depleted in HFSEs such as Nb, Ti, La and Ce, with pronounced negative anomalies of Nb, Ti, P, Eu, Sr and Ba. Its Sr-Nd-Pb isotopic compositions show positive ε(t)(+0.72-+3.08), low T(805-997 Ma),and high radioactive Pb with(Pb/Pb)of 18.710-19.304,(Pb/Pb)of 15.557-15.604 and(Pb/Pb)of 37.887-38.330. Petrological characteristics and geochemical data suggest that the alkalifeldspar granite in the Hongol area belongs to aluminous A-type granite. This A-type granite formed in a post-collisional extensional setting and was generated by the partial melting of felsic rocks in the middlelower crust resulting from post-collisional slab breakoff. It is suggested that the Paleo-Asian Ocean was closed before the Permian in central Inner Mongolia.
基金founded by the National Science and Technology Support Program,China(Grant No.2011BAB06B04-05)
文摘The Huaniushan granite is located at the Beishan orogenic belt, northwestern China. At the contact zone between the granite and marble, a hydrothermal Pb-Zn and skarn Au deposit is formed. LA-ICP-MS zircon U-Pb dating yielded a weighted mean 206Pb/238U age of 229.5±2.6 Ma (MSDW=0.93) for the Huaniushan granite, imply-ing its Late Triassic intrusion. Geochemistry analyses show that the Huaniushan granite is enriched in Si, K, Na, and REE, and depleted in Mg and Ca, with contents of SiO2 (70.8% to 74.4%), Na2O+K2O (8.8% to 10.2%), CaO (0.93% to 1.44%), and MgO (0.14% to 0.48%). REE is characterized by obvious negative Eu anomaly. Rb, Th, U, K, Pb, Nb, Zr and Hf elements are rich in the granite while Ba, Sr, P, Ti and Eu are deplete. The granite has a high (Zr+Nb+Ce+Y) abundance and 104 Ga/Al ratios. Petrology, major and trace elements data all indicate that the Hua-niushan granite is A-type granite which intruded in a post-collisional extensional tectonic setting. The magma was dominantly sourced from partial melting of crustal intermediate-felsic igneous rocks. Intensive magmatic activities and Au-Cu-Mo mineralization occurred throughout the Beishan orogenic belt during the period from ca. 240 to 220 Ma.
文摘Zircon SHRIMP ages of the Aolaoshan granite on the south margin of the QilianMts. range from 445 + - 15.3 to 496 + - 7.6 Ma (averaging 473 Ma), belonging to the EarlyOrdovician. Geochemically, the granite is similar to I-type granite and, tectonically, was formed inan island-arc environment based on relevant diagrams for structural discriminations. Consideringalso the regional geology, the authors suggest that the granite is part of an ultrahigh-pressurebelt on the south margin of the Qilian Mts. and that its formation bears a close relationship tothis belt.
基金supported by the National Science Foundation of China (Grant No., 41472191, 41502191, 41172186, 40972136)the Special Fund for Basic Scientific Research of Central Colleages, Chang’an University (Grant Nos. 310827161002, 310827161006)+1 种基金the Commonweal Geological Surveythe Aluminum Corporation of China and the Land-Resources Department of Qinghai Province (Grant No., 200801)
文摘The East Kunlun Orogenic Belt(EKOB)in northeast margin of the Qinghai-Tibetan Plateau is an important part of the Central Orogenic System(COS).During the long-time geological evolution,complicated tectono
基金co-financed by the"Xinjiang Uygur Autonomous Region Central Government Returns the Price of Two Rights(K15-1-LQ06)"the National Natural Science Foundations of China(No.42101005)the Research Foundation of Education Department of Hunan Province for Excellent Young Scholars(No.19B097)。
文摘The Qimantag in the East Kunlun Orogenic Belt has widespread Triassic magmatic rocks that have received scant attention,with an unresolved issue relating to its petrogenesis and geodynamics.In this paper,we used zircon U-Pb-Hf isotopes and whole-rock geochemistry to trace the petrogenesis and tectonic settings of the moyite and monzogranite from the Qimantag Alananshan,East Kunlun.The moyite and monzogranite are silicic(SiO_(2-)~69.9-76.41%),highly alkali(Na_(2)O+K_(2)O~7.29 to8.96 wt.%),with Mg^(#)about 10.4-30.34,indicative of a high-K calc-alkaline rock series.The rare earth element patterns diagram is right-leaning,with a negative Eu anomaly(δEu=0.31-0.68).They are enriched in Rb,K,and light rare earth elements but depleted in Nb,Ta,and Ti,with abundant amphibole,typical of I-type granites.U-Pb on zircon constrained the emplacement of the moyite at 223.9±2.6 Ma and monzogranite at 226.9±2.9 Ma.TheεHf(t)values range from-2.8 to+0.1 except for one outlier value of-7.0,corresponding two-stage model age of 1249-1437 Ma.Our combined geochemical and isotopic results indicate that the moyite and monzogranite were derived from partial melting of the lower thicken crust with the contribution from the older basement materials.These rocks formed in a post-collision setting that is transitional between compressive collision and extension orogeny.
基金supported financially by the National Key Research and Development Program of China(Grant Nos 2018YFC0603702 and 2017YFC0601301)NSFC projects(Grant Nos 41372077 and U1403291)+1 种基金projects of the China Geological Survey(Grant Nos DD20190685,DD20160024,DD20160123,and DD20160345)This publication is a contribution to IGCP Project 662。
文摘The central part of South Mongolia,located to the north of the Solonker Suture,is a key region for studying the late Paleozoic tectonic evolution of the Central Asian Orogenic Belt(CAOB).Voluminous late Paleozoic granitic rocks,especially of Carboniferous age,were intruded in this area.However,these granitoids have not been well studied and there is a lack of precise ages and isotopic data.This has hampered our understanding of the tectonic evolution of southeastern Mongolia,and even the entire CAOB.In this paper,we provide new U-Pb isotopic ages and geochemical analyses for these Carboniferous granites.One granite from the Ulaanbadrakh pluton yielded a zircon U-Pb age of 326 Ma,which indicates emplacement in the Early Carboniferous,and three other granites from the Khatanbulag region gave zircon U-Pb ages of 316 Ma,315 Ma,and 311 Ma,which indicate emplacement in the Late Carboniferous.The Early Carboniferous granite has SiO2 contents of 70.04–70.39 wt%and K_(2)O+Na_(2)O contents of 6.48–6.63 wt%,whereas the Late Carboniferous granites have more variable compositions(SiO2=65.29–77.91 wt%and K2O+Na2O=5.30–7.27 wt%).All the granites are weakly-peraluminous I-types that are relatively enriched in U,Th,K,Zr,Hf,and LREEs.The whole rock Sr-Nd and zircon in situ Lu-Hf isotope analyses for the Early Carboniferous granite gave positive values ofεNd(t)(2.87)andεHf(t)(4.31–12.37)with young Nd(TDM=860 Ma)and Hf(TDMc=1367–637 Ma)two-stage model ages,indicating derivation from juvenile crustal material.In contrast,the Late Carboniferous granites had more diverse values ofεNd(t)(–4.03 to 2.18)andεHf(t)(–12.69 to 5.04)with old Nd(TDM=1358–1225 Ma)and Hf(TDMc=2881–1294 Ma)depleted mantle two-stage model ages,suggesting derivation from remelting of Precambrian basement.Based on the existing results,the tectonic setting of the Late Carboniferous granites in the central part of South Mongolia is known for its diversity,and this paper believes that the tectonic background of the carboniferous granite records the tectonic transition from a continental-margin-arc to a postcollisional extensional setting during the Late Carboniferous–Permian.
基金jointly supported by the National Natural Science Foundation of China (41802093)the National Key Research and Development Program of China (2017YFC0601201 and 2018YFC0604002)+2 种基金the Project of Xinjiang Bureau of Geology and Mineral Resources (2011BAB06B03-3)the Project of China Geological Survey (DD20190405 and DD20190406)the Fundamental Research Funds for the Central Universities, Sun Yat-sen University (2021qntd23).
文摘The A-type granites with highly positiveε_(Nd)(t)values in the West Junggar,Central Asian Orogenic Belt(CAOB),have long been perceived as a group formed under the same tectonic and geodynamic setting,magmatic sourceq and petrogenetic model.Geological evidence shows that these granites occurred at two different tectonic units related to the southeastern subduction of Junggar oceanic plate:the Hongshan and Karamay granites emplaced in the southeast of West Junggar in the Baogutu continental arc;whereas the Akebasitao and Miaoergou granites formed in the accretionary prism.Here the authors present new bulk-rock geochemistry and Sr-Nd isotopes,zircon U-Pb ages and Hf-O isotopes data on these granites.The granites in the Baogutu continental arc and accretionary prism contain similar zirconε_(Hf)(t)values(+10.9 to+16.2)and bulk-rock geochemical characteristics(high SiO_(2)and K_(2)O contents,enriched LILEs(except Sr),depleted Sr,Ta and Ti,and negative anomalies in Ce and Eu).The Hongshan and Karamay granites in the Baogutu continental arc have older zircon U-Pb ages(315-305 Ma)and moderate^(18)O enrichments(δ^(18)_(O_(zircon))=+6.41‰-+7.96‰);whereas the Akebasitao and Miaoergou granites in the accretionary prism have younger zircon U-Pb ages(305-301 Ma)with higher^(18)O enrichments(δ^(18)_(O_(zircon))=+8.72‰-+9.89‰).The authors deduce that the elevated^(18)O enrichments of the Akebasitao and Miaoergou granites were probably inherited from low-temperature altered oceanic crusts.The Akebasitao and Miaoergou granites were originated from partial melting of low-temperature altered oceanic crusts with juvenile oceanic sediments below the accretionary prism.The Hongshan and Karamay granites were mainly derived from partial melting of basaltic juvenile lower crust with mixtures of potentially chemical weathered ancient crustal residues and mantle basaltic melt(induced by hot intruding mantle basaltic magma at the bottom of the Baogutu continental arc).On the other hand,the Miaoergou charnockite might be sourced from a deeper partial melting reservoir under the accretionary prism,consisting of the low-temperature altered oceanic crust,juvenile oceanic sediments,and mantle basaltic melt.These granites could be related to the asthenosphere's counterflow and upwelling,caused by the break-off and delamination of the subducted oceanic plate beneath the accretionary prism Baogutu continental arc in a post-collisional tectonic setting.
文摘Greenstone rocks, which include Banded Iron Formations (BIFs), tuffs, volcanic flows (basalt, andesite and rhyolite), and clastic sedimentary rocks (shale-mudstone, greywacke-sandstone and conglomerate), crop out around Geita Hills and are flanked by granites and granodiorites. BIFs and tuffs occupy larger area than other lithological units, which crop out as patches. Structural analysis indicates that layers of green-stone rocks are folded and display a regional fold axis with an attitude of 320o/40o. Low-grade metamorphic mineral assemblages (actinolite-epidote-chlorite in basalts and muscovite-epidote-chlorite in granitoids) are common in these rocks;this indicates a regional metamorphism at greenschist facies. However, BIFs and basalts are locally metamorphosed to epidote-amphibolite and amphibolite facies. Basalts belong to the tholeiite series whereas granites, diorites and rhyolites belong to the calcalkaline series. Chondrite normalized rare earth element pattern of basalt is flat and plot slightly below the average N-MORB values suggesting the enrichment of the light rare earth elements, which means that mantle magma source was an E-MORB. Granitoids and rhyolites have strong affinities to the continental arc source magma displaying strong enrichments in the LREEs with (La/Sm)N values ranging between 2.53 and 3.95 in rhyolites and between 4.08 and 5.40 in granitoids. The granitoids are classified as the I-type synorogenic metaluminous granites and granodiorites. Geochemical signatures suggest that the Geita Hills basalts erupted at the enriched mid ocean ridge setting of the back arc setting, and the granites, granodiorite and rhyolite formed in a volcanic arc setting particularly the continental arc.
基金financially supported by the Mineral Prospecting and Assessment project, CGS (1212011085020)the National Nature Science Foundation of China (40972066)
文摘As the wall rock of the Aketas gold deposit,the Aketas granite is about 45 km away from Fuyun County, Xinjiang Province. The zircon weighted mean U–Pb age of the Aketas granite is 309.0 ± 4.7 Ma, indicating that the Aketas granite was emplaced during the late Carboniferous. The Aketas granite belongs to the High-K calcalkaline series, with Si O2 content from 63.00 to 68.20 %,K2 O content from 3.06 to 4.49 % and Na2 O content from4.14 to 6.02 %. The Alkaline Ratio(AR) of the Aketas granite is high, from 1.89 to 3.47, and is 2.95 on average.The Aketas granite has lowPREE(92.42–122.73 ppm)and highPLREE/PHREE ratios(6.54–11.88). For the trace elements, the Aketas granite is enriched in LILE(Rb,U, Th, K) and incompatible elements, and marked depleted in HFSE(Nb, Ta, P, Ti). The geochemical characteristics of the Aketas granite suggest that it is a typical I-type and volcanic arc granite, and that the crystallization of clinopyroxene and hornblende is notable during the magmatic evolution. In combination with the regional tectonic studies, we propose that the emplacement of the Aketas granite implies the Altai and East Junggar area was still dominated by a subduction system at *309 Ma.