Soy flour(SF),soy protein and soy protein isolates(SPI)have been the focus of increasing research on their application as new materials for a variety of applications,mainly for wood adhesives and other resins.Tannins ...Soy flour(SF),soy protein and soy protein isolates(SPI)have been the focus of increasing research on their application as new materials for a variety of applications,mainly for wood adhesives and other resins.Tannins too have been the focus of increasing research for similar applications.While both materials are classed as non-toxic and have achieved interesting results the majority of the numerous and rather inventive approaches have still relied on some sort of hardeners or cross-linkers to bring either of them or even their combination to achieve acceptable results.The paper after a presentation of the two materials and their characteristics concentrates on the formation of gels,gelling and even hardening in the case of soy-tannin combined resins.The chapter than finishes with details of the formation of resins giving suitable wood adhesive of acceptable performance by the covalent coreaction of soy protein and tannin without any other hardener,thus totally bio-sourced,non-toxic and environment friendly as a base of further advances to expect in future by these two materials combination.展开更多
Reference electrodes are a key part for corrosion monitoring and measurement of rebars in concrete. A reference electrode that can be buried in concrete is fabricated by using Ag/Ag Cl electrode and methyl cellulose g...Reference electrodes are a key part for corrosion monitoring and measurement of rebars in concrete. A reference electrode that can be buried in concrete is fabricated by using Ag/Ag Cl electrode and methyl cellulose gelling electrolyte. The stability, repeatability and anti-polarization of the reference electrode are investigated; the influences of the inner electrolyte loss, exterior OH- contamination, and temperature on the potential of the reference electrode are also investigated in this paper. The results show that the reference electrode has good stability, repeatability, and antipolarization. The influences of inner electrolyte loss, exterior OH- contamination, and temperature on the potential of the reference electrode are minimal. Therefore, it can be used for corrosion monitoring and measurement of rebars in concrete.展开更多
Encapsulation confers protection to substances as essential oils from processes like oxidation, evaporation or uncontrolled release. In this study almond oil capsules were obtained by co-extrusion/gelling technique. C...Encapsulation confers protection to substances as essential oils from processes like oxidation, evaporation or uncontrolled release. In this study almond oil capsules were obtained by co-extrusion/gelling technique. Chitosan was used as shell material and sodium triphosphate pentabasic as cross linking agent. Different encapsulation process variables were studied: cross-linker concentration, nozzles size and potential. Optical microscopy was used to determine the capsules morphology and degradability tests were performed in order to study capsules degradation over time. Results showed that nozzles size and cross linking concentration are key variables to consider in the encapsulation process. Degradability tests showed rapid weight loss.展开更多
Objective:This study aimed to lay the foundation for the research on Panax notoginseng saponins(PNS)in pH-sensitive in situ gel and the development and improvement of related preparations.Methods:We used Carbopol■940...Objective:This study aimed to lay the foundation for the research on Panax notoginseng saponins(PNS)in pH-sensitive in situ gel and the development and improvement of related preparations.Methods:We used Carbopol■940,a commonly used pH-sensitive polymer,and the thickener hydroxypropyl methylcellulose(HPMC E4M)as an ophthalmic gel matrix to prepare an ophthalmic in situ gel of PNS.In addition,formula optimization was performed by assessing gelling capability with the results of in vitro release studies.In vitro(corneal permeation,rheological,and stability)and in vivo(ocular irritation and preliminary pharmacokinetics in the vitreous)studies were also performed.Results:The results demonstrated that the in situ gelling systems containing PNS showed a sustained release of the drug,making it an ideal ocular delivery system for improving posterior ocular bioavailability.Conclusions:This study lays the foundation for the research of PNS contained in an in situ pH-triggered gel as well as the development and improvement of related preparations.It concurrently traditional Chinese medicine with a contemporary in situ gelling approach to provide new directions for the treatment of posterior ocular diseases such as diabetic retinopathy.展开更多
An essential oil is the volatile lipophilic component extracted from plants. Microencapsulation systems protect the essential oil from degradation and evaporation, and at the same time allow a sustained release. This ...An essential oil is the volatile lipophilic component extracted from plants. Microencapsulation systems protect the essential oil from degradation and evaporation, and at the same time allow a sustained release. This work analyzed and characterized the rosemary essential oil microcapsules prepared by co-extrusion technique using alginate as wall material and calcium chloride as cross linker. Several instrumental techniques were used: optical microscopy, coulter counter, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), termogravimetric analysis (TGA), spectrophotometry, antimicrobial test and chromatography. Results show that rosemary oil has pesticidal properties, and its microencapsulation allows knowing that these properties remain inside the microcapsules.展开更多
In the framework of searching for new pectin sources to partially compensate for domestic and regional demands, the peel (albedo) of the “non-comestible” fruit of Poncirus trifoliata was investigated using a relativ...In the framework of searching for new pectin sources to partially compensate for domestic and regional demands, the peel (albedo) of the “non-comestible” fruit of Poncirus trifoliata was investigated using a relatively simple experimental design for optimization, in which only the variable was the extraction pH (1.0, 1.5, and 2.0) on the basis of our previous studies on diverse pectin sources. The results showed that the yield of pectin (7.4%-19.8%) was strongly influenced by the extraction pH when the other parameters, namely the solid to liquid extractant (S/L) ratio, temperature (T °C), and time (t) were fixed to 1:25 (w/v), 75°C, and 90 min, respectively. Likewise, the galacturonic acid content (GalA: 61.4%-79.2%), total neutral sugar content (TNS: 9.1%-22.5%), degree of branching (3.5%-13.9%), homogalacturonan (HG) to rhamnogalacturonan-I (RG-I) ratio (2.2-5.6), degree of methylesterification (DM: 54-77), viscosity average molecular weight (Mν: 57-82), and gelling capacity (GC: 124-158) were all affected by the extraction pH. The optimum pH for producing pectin with good yield, quality characteristics (GalA > 65%, DM > 60, Mν > 80 kDa), and gelling capacity (GC > 150), from the peel of P. trifoliata fruit, was found to be pH 1.5.展开更多
Thermo-respansive chitosan hydrogel system (TRCHS) was prepared and its mierostructure was investigated by scaning electron microscope (SEM) and mercury intrusion poremaster (MIP). Based on analyzing the data, a...Thermo-respansive chitosan hydrogel system (TRCHS) was prepared and its mierostructure was investigated by scaning electron microscope (SEM) and mercury intrusion poremaster (MIP). Based on analyzing the data, a special porosity property was reported at the first time. Its gelling mechanism was studied by a group of contrast experiments. Results may provide experimental and theoretical supports for how to apply it on tissue engineering scaffold and how to influeuee or control its essential properties.展开更多
The microcapsules containing the artificial diet for tropical fishes were prepared with the spray gelling method in order to prevent water environmental pollution. The carboxymethyl cellulose sodium aqueous solution, ...The microcapsules containing the artificial diet for tropical fishes were prepared with the spray gelling method in order to prevent water environmental pollution. The carboxymethyl cellulose sodium aqueous solution, in which α-tocopherol droplets containing the powdery artificial diet were dispersed, was dropped or sprayed into the chitosan aqueous solution. Microcapsules were prepared by forming polyionic complex shell made from chitosan and carboxymethyl cellulose sodium. In the experiment, the concentration of carboxymethyl cellulose sodium (CMCNa) was mainly changed to investigate the effect on the diameters of microcapsules, the content and the microencapsulation efficiency. The microcapsules couldn’t be prepared with the concentration of carboxymethyl cellulose sodium less than 3.0 wt%. The microcapsules were the core-shell type. The diameters of microcapsules were increased with the concentration of CMCNa and the microencapsulation efficiency of ca. 100% could be obtained by the preparation method presented in this study. The microcapsules were found to be eaten well by tropical fishes and to prevent water environmental pollution.展开更多
Biological macromolecules, such as proteins and polysaccharides, are widely used in food systems because their interactions impart a desirable texture to food products. Plant proteins interact with food components via...Biological macromolecules, such as proteins and polysaccharides, are widely used in food systems because their interactions impart a desirable texture to food products. Plant proteins interact with food components via protein-protein and protein-polysaccharide associations, and the formation of a matrix, which can entrap other food components such as water, lipids and flavors. These networks provide structural integrity to food products and can serve as important functional ingredients in processed foods. Intermolecular interactions of typical polysaccharides result either in simple associations or in the form of a double or triple helix. The linear double helical segments may then interact to form a super junction and a three-dimensional gel network. The formation of these structural networks takes place during processing and involves the transformation from a liquid or viscous sol into a solid material with elastic properties. Interests in the behavior of mixed gels center on the prospects of enhanced flexibility in their mechanical and structural properties compared to those of pure gels. Findings on molecular interactions between plant proteins (e.g., soy, canola and pea proteins) and polysaccharides (e.g., guar gum, carrageenan, and pectin) allow for the modification of physical and textural characteristics of mixed biopolymers to meet desired functional property.展开更多
Energetic nanofluid fuel has caught the attention of the field of aerospace liquid propellant for its high energy density(HED), but it suffers from the inevitable solid-liquid phase separation problem. To resolve this...Energetic nanofluid fuel has caught the attention of the field of aerospace liquid propellant for its high energy density(HED), but it suffers from the inevitable solid-liquid phase separation problem. To resolve this problem, herein we synthesized the high-Al-/B-containing(up to 30%(mass)) HED gelled fuels, with low-molecular-mass organic gellant Z, which show high net heat of combustion(NHOC), density, storage stability, and thixotropic properties. The characterizations indicate that the application of energetic particles to the gelled fuels obviously destroys their fibrous network structures but can provide the new particle-gellant gelation microstructures, resulting in the comparable stability between 1.0%(mass) Z/JP-10 + 30%(mass) Al or B and pure JP-10 gelled fuel. Moreover, the gelled fuels with high-content Al or B exhibit high shear-thinning property, recovery capability, and mechanical strength, which are favorable for their storage and utilization. Importantly, the prepared 1.0%(mass) Z/JP-10 + 30%(mass) B(or 1.0%(mass) Z/JP-10 + 30%(mass) Al) shows the density and NHOC 1.27 times(1.30) and 1.43 times(1.21)higher than pure JP-10, respectively. This work provides a facile and valid approach to the manufacturing of HED gelled fuels with high content of energetic particles for gel propellants.展开更多
Disodium hydrogen phosphate dodecahydrate (Na2HPO4·12H2O) is an attractive candidate for phase change materials. The main problem for its practical use comes from incongruent melting character during thermal cy...Disodium hydrogen phosphate dodecahydrate (Na2HPO4·12H2O) is an attractive candidate for phase change materials. The main problem for its practical use comes from incongruent melting character during thermal cycling. Experimentally, heat of fusion of the pure salt decreased from 200 to 25 jog 1 in a four-run freeze-thaw cycling. Additives such as thickening agent or in-situ synthesized polyacrylate sodium in the molten salt can prevent its phase separation to some extent. In the test, sodium alginate 3.0%-5.0% (w/w) thickened mixture containing Na2HPOn·12H2O and some water showed constant heat storage capacities. Polyacrylate sodium gelled salt was synthesized through polymerizing sodium acrylate in the melt of Na2HPOn·12H2O and some extra water at 50 ℃. Optimum conditions composed of sodium acrylate 3.0%-5.0% (w/w), cross-linking agent N,N-methylenebis-acrylamide 0.10%-0.20% (w/w), K2S208 and Na2SO3 (mass ratio 1 ; 1) 0.06%-0.12% (w/w). As opposed to normal large crystals of pure Na2HPOn·12H2O in solid state, the gelled salt existed in a large number of tiny particles dispersed in the gel network at room temperature, commonly less than 2 mm. But only those sample particles with sizes less than 0.2 mm may have relatively stable thermal storage property. A problem encountered was the poor reproducibility of the synthesis method: heat storage capacity of the product was often very different even though the synthesis was carried out in the same conditions. An alternative gelling method by sodium alginate grafted sodium acrylate was tried and it showed a fairly good effect. Heat capacities and heat of fusion of Na2HPO4·12H2O were measured by an adiabatic calorimeter.展开更多
Gel propulsion systems have many advantages with respect to high performance, the energy management of liquid propulsion systems, storability, high density impulse, and low leakage of liquid propellants. The atomizati...Gel propulsion systems have many advantages with respect to high performance, the energy management of liquid propulsion systems, storability, high density impulse, and low leakage of liquid propellants. The atomization process provides sufficient contact surface area between the gelled fuel and oxidizer jets. It is important to study how injection characteristics of gelled propellants are related with break-up and spray distribution. The break-up and mixing processes are very important in achieving maximum efficiency and necessitate the careful study of combustion instability. Gelled propellants are non-Newtonian fluids in which the viscosity is a function of the shear rate, and they have a high dynamic shear viscosity which depends on the amount of gelling agent contents. The present study has focused on the break-up process, wave development of ligament and liquid sheets formed by impinging jets with various gelling agent contents. Especially, the break-up processes of the impinging jets at the initial conditions are studied. The break-up process of like-on-like doublet impinging jets are experimentally characterized using non-Newtonian liquids which are mixed by ionized water 98.5 wt%, Carbopol 941 0.5wt% or 1.0wt%, and NaOH(concentration 10%) 1.0wt%. For the like-on-like doublet injector, the generation of a liquid sheet at the impinging point of two jets was observed. The spray shape with elliptical pattern is distributed in a perpendicular direction to the momentum vectors of the jets. Gelled propellant simulants with high viscosity jets are more stable and produce less pronounced surface waves than low viscosity jets. Generally, the break-up length decreased due to the increasing Reynolds number. However, surface waves and atomized droplets increased. Gelled propellant simulants from like-on-like doublet impinging jets have the spray shape of closed rim patterns at low pressure. Also, the rim patterns of spray have no disturbances on the spray sheet. As the injection pressure increased, rimless patterns which were composed of ligament sheets and small droplets emerged due to the effect of the aerodynamic action. Periodic wave-like structures observed from the near impingement point and atomized droplets were observed at a location further downstream.展开更多
The gel polymer electrolyte containing N-propyl, methylpyrrolidinium bis((trifiuoromethyl) sulfonyl)imide (PYR13TFSI) with better performance is prepared by radical polymerization method. The interface status be...The gel polymer electrolyte containing N-propyl, methylpyrrolidinium bis((trifiuoromethyl) sulfonyl)imide (PYR13TFSI) with better performance is prepared by radical polymerization method. The interface status between the LiFePO4 electrode and the electrolyte is characterized by a scanning electron microscope and X-ray photoelectron spectroscopy (XPS). There is a layer of membrane on the gel electrolyte and perfect shell membranes on the surface of active LiFePO4 cluster, on the other hand, N and S photoelectron signals are observed in XPS spectra after charge-discharge cycles. The results show that the ionic liquids and unpolymerized methyl methacrylate incorporate into the electrode surface and form the SEI membrane with Li ion and electrons while the gel electrolyte contacts with the electrode. The formation process of the SEI membrane needs at least three cycles, the discharge capacity increases as the SEI membrane becomes sufficiently thick, which blocks further electron transfer, and the system may approach steady state. The performance of cell with ionic liquid gel polymer electrolyte is measured at different rate. The cells retain 132 mAh/g at 0.2 C, 128 mAh/g at 0.5 C, and 120 mAh/g at 1.0 C after 30 cycles with charge-discharge efficiency of ca. 98% at every rate.展开更多
Skin is considered as an important route of administration of drugs for both local and systemic effects. The effectiveness of topical therapy depends on the physicochemical properties of the drug and adherence of the ...Skin is considered as an important route of administration of drugs for both local and systemic effects. The effectiveness of topical therapy depends on the physicochemical properties of the drug and adherence of the patient to the treatment regimen as well as the system’s ability to adhere to skin during the therapy so as to promote drug penetration through the skin barrier.Conventional formulations for topical and dermatological administration of drugs have certain limitations like poor adherence to skin, poor permeability and compromised patient compliance.For the treatment of diseases of body tissues and wounds, the drug has to be maintained at the site of treatment for an effective period of time. Topical film forming systems are such developing drug delivery systems meant for topical application to the skin, which adhere to the body, forming a thin transparent film and provide delivery of the active ingredients to the body tissue. These are intended for skin application as emollient or protective and for local action or transdermal penetration of medicament for systemic action. The transparency is an appreciable feature of this polymeric system which greatly influences the patient acceptance.In the current discussion, the film forming systems are described as a promising choice for topical and transdermal drug delivery. Further the various types of film forming systems (sprays/solutions, gels and emulsions) along with their evaluation parameters have also been reviewed.展开更多
Itraconazole (ITZ) is a broad spectrum triazole antifungal drug and commercially available as oral forms. However, effective topical forms are interesting to avoid systemic adverse effects,to directly deliver antifung...Itraconazole (ITZ) is a broad spectrum triazole antifungal drug and commercially available as oral forms. However, effective topical forms are interesting to avoid systemic adverse effects,to directly deliver antifungal drugs to the target sites and to enhance patient compliance (1)Microemulsion-based hydrogel (MBH), a semisolid form of microemulsion (ME), is one of novel formulations practically used as topical drug carriers [2].展开更多
The present seal form is restricted by itself, so pilot study in new-style seal-filling hydrogel by choosing acrylamide as absorb-water performance monomer with binary solution hybrid method was carried out. The feasi...The present seal form is restricted by itself, so pilot study in new-style seal-filling hydrogel by choosing acrylamide as absorb-water performance monomer with binary solution hybrid method was carried out. The feasibility of using new-style seal-filling hydrogel to build hermetic wall rapidly was indicated from results. Gelling time of seal-filling hydrogel was influenced by gelling temperature, initiator concentration and accelerator content. Gelling time decreased by 1/3~1/2 times as gelling temperature increased by each 10℃. Gelling time was proportional to 1/2 power of initiator concentration, and was linear of accelerator content with one power. Addition, deformation rate of seal-filling hydrogel depended on monomer content, cross linking agent concentration, accelerator content. And staggered change of elastic modulus was come forth, its demar cation points generally appeared at the value of 50% of vertical deformation.展开更多
The study carried out here was focused on developing conventional monolithic controlled release matrix tablet of Atorvastatin calcium using carbomer as release controlling polymer. This system ensures the drug release...The study carried out here was focused on developing conventional monolithic controlled release matrix tablet of Atorvastatin calcium using carbomer as release controlling polymer. This system ensures the drug release at the alkaline pH region where the drug has got maximum solubility. Further the study was concentrated on comparing the impact of gelling agent polyvinyl pyrrolidone on drug release. Quality by design tools were considered during formulation development and the polymer concentrations were optimized adopting the statistical tool, design of experiments (DoE). The optimized formulation of present study exhibited desired controlled drug release characteristics in the alkaline pH conditions and at acidic environment the drug dissolution was minimal as intended.展开更多
The aim of this work was to develop a functional biodegradable nonwoven with antimicrobial microcapsules maintaining the stability and biodegradability of the nonwoven for use in agriculture applications. The nonwoven...The aim of this work was to develop a functional biodegradable nonwoven with antimicrobial microcapsules maintaining the stability and biodegradability of the nonwoven for use in agriculture applications. The nonwoven was obtained using hemp fibers by Wetlaid technology. Microcapsules were prepared by co-extrusion/gelling method with alginate as shell and oregano oil as core material. The microcapsules were developed to protect and control release of oregano oil. Microcapsules were incorporated on the nonwoven by coating method using a natural polymer as a graft material. After incorporating micro-capsules, the nonwoven was subjected to several tests in order to determinate the microcapsules fixation and their functionality. The nonwovens were characterized for their antimicrobial activity against different kinds of bacteria and fungi. Nonwoven loaded with microcapsules was found to show good antimicrobial activity in comparison with nonwoven that was not loaded with microcapsules.展开更多
The upper part of the Fujia deposit was mined out by open-pit, and the lower part is being mined underground. The level pillar between open-pit and underground mine had a thickness of 24 m, a length of 300 m and a max...The upper part of the Fujia deposit was mined out by open-pit, and the lower part is being mined underground. The level pillar between open-pit and underground mine had a thickness of 24 m, a length of 300 m and a maximum width of 35 in. As the level pillar contained about 5.2 million ton ore of high nickel grade, it was necessary to recover the level pillar. Because of special need of safety, underhand heading cut-and-fill stoping method was used. For the first two layers of heading, the cemented fill materials were a mix of water and high-aluminum-content cement with silicate gelling agent; and for other heading layers, total tailings was added into the fill mix in order to reduce the cement consumption. Finally, the level pillar was recovered successfully.展开更多
文摘Soy flour(SF),soy protein and soy protein isolates(SPI)have been the focus of increasing research on their application as new materials for a variety of applications,mainly for wood adhesives and other resins.Tannins too have been the focus of increasing research for similar applications.While both materials are classed as non-toxic and have achieved interesting results the majority of the numerous and rather inventive approaches have still relied on some sort of hardeners or cross-linkers to bring either of them or even their combination to achieve acceptable results.The paper after a presentation of the two materials and their characteristics concentrates on the formation of gels,gelling and even hardening in the case of soy-tannin combined resins.The chapter than finishes with details of the formation of resins giving suitable wood adhesive of acceptable performance by the covalent coreaction of soy protein and tannin without any other hardener,thus totally bio-sourced,non-toxic and environment friendly as a base of further advances to expect in future by these two materials combination.
基金financially supported by the National Science and Technology Support Program of China(Grant No.2011BAG07B04)
文摘Reference electrodes are a key part for corrosion monitoring and measurement of rebars in concrete. A reference electrode that can be buried in concrete is fabricated by using Ag/Ag Cl electrode and methyl cellulose gelling electrolyte. The stability, repeatability and anti-polarization of the reference electrode are investigated; the influences of the inner electrolyte loss, exterior OH- contamination, and temperature on the potential of the reference electrode are also investigated in this paper. The results show that the reference electrode has good stability, repeatability, and antipolarization. The influences of inner electrolyte loss, exterior OH- contamination, and temperature on the potential of the reference electrode are minimal. Therefore, it can be used for corrosion monitoring and measurement of rebars in concrete.
文摘Encapsulation confers protection to substances as essential oils from processes like oxidation, evaporation or uncontrolled release. In this study almond oil capsules were obtained by co-extrusion/gelling technique. Chitosan was used as shell material and sodium triphosphate pentabasic as cross linking agent. Different encapsulation process variables were studied: cross-linker concentration, nozzles size and potential. Optical microscopy was used to determine the capsules morphology and degradability tests were performed in order to study capsules degradation over time. Results showed that nozzles size and cross linking concentration are key variables to consider in the encapsulation process. Degradability tests showed rapid weight loss.
文摘Objective:This study aimed to lay the foundation for the research on Panax notoginseng saponins(PNS)in pH-sensitive in situ gel and the development and improvement of related preparations.Methods:We used Carbopol■940,a commonly used pH-sensitive polymer,and the thickener hydroxypropyl methylcellulose(HPMC E4M)as an ophthalmic gel matrix to prepare an ophthalmic in situ gel of PNS.In addition,formula optimization was performed by assessing gelling capability with the results of in vitro release studies.In vitro(corneal permeation,rheological,and stability)and in vivo(ocular irritation and preliminary pharmacokinetics in the vitreous)studies were also performed.Results:The results demonstrated that the in situ gelling systems containing PNS showed a sustained release of the drug,making it an ideal ocular delivery system for improving posterior ocular bioavailability.Conclusions:This study lays the foundation for the research of PNS contained in an in situ pH-triggered gel as well as the development and improvement of related preparations.It concurrently traditional Chinese medicine with a contemporary in situ gelling approach to provide new directions for the treatment of posterior ocular diseases such as diabetic retinopathy.
基金The autors thank IVACE(Institut Valenciàde Competitivitat Empresarial,Spain)FEDER(Fondo Europeo de Desarrollo Regional,Europe)for the financial support
文摘An essential oil is the volatile lipophilic component extracted from plants. Microencapsulation systems protect the essential oil from degradation and evaporation, and at the same time allow a sustained release. This work analyzed and characterized the rosemary essential oil microcapsules prepared by co-extrusion technique using alginate as wall material and calcium chloride as cross linker. Several instrumental techniques were used: optical microscopy, coulter counter, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), termogravimetric analysis (TGA), spectrophotometry, antimicrobial test and chromatography. Results show that rosemary oil has pesticidal properties, and its microencapsulation allows knowing that these properties remain inside the microcapsules.
文摘In the framework of searching for new pectin sources to partially compensate for domestic and regional demands, the peel (albedo) of the “non-comestible” fruit of Poncirus trifoliata was investigated using a relatively simple experimental design for optimization, in which only the variable was the extraction pH (1.0, 1.5, and 2.0) on the basis of our previous studies on diverse pectin sources. The results showed that the yield of pectin (7.4%-19.8%) was strongly influenced by the extraction pH when the other parameters, namely the solid to liquid extractant (S/L) ratio, temperature (T °C), and time (t) were fixed to 1:25 (w/v), 75°C, and 90 min, respectively. Likewise, the galacturonic acid content (GalA: 61.4%-79.2%), total neutral sugar content (TNS: 9.1%-22.5%), degree of branching (3.5%-13.9%), homogalacturonan (HG) to rhamnogalacturonan-I (RG-I) ratio (2.2-5.6), degree of methylesterification (DM: 54-77), viscosity average molecular weight (Mν: 57-82), and gelling capacity (GC: 124-158) were all affected by the extraction pH. The optimum pH for producing pectin with good yield, quality characteristics (GalA > 65%, DM > 60, Mν > 80 kDa), and gelling capacity (GC > 150), from the peel of P. trifoliata fruit, was found to be pH 1.5.
文摘Thermo-respansive chitosan hydrogel system (TRCHS) was prepared and its mierostructure was investigated by scaning electron microscope (SEM) and mercury intrusion poremaster (MIP). Based on analyzing the data, a special porosity property was reported at the first time. Its gelling mechanism was studied by a group of contrast experiments. Results may provide experimental and theoretical supports for how to apply it on tissue engineering scaffold and how to influeuee or control its essential properties.
文摘The microcapsules containing the artificial diet for tropical fishes were prepared with the spray gelling method in order to prevent water environmental pollution. The carboxymethyl cellulose sodium aqueous solution, in which α-tocopherol droplets containing the powdery artificial diet were dispersed, was dropped or sprayed into the chitosan aqueous solution. Microcapsules were prepared by forming polyionic complex shell made from chitosan and carboxymethyl cellulose sodium. In the experiment, the concentration of carboxymethyl cellulose sodium (CMCNa) was mainly changed to investigate the effect on the diameters of microcapsules, the content and the microencapsulation efficiency. The microcapsules couldn’t be prepared with the concentration of carboxymethyl cellulose sodium less than 3.0 wt%. The microcapsules were the core-shell type. The diameters of microcapsules were increased with the concentration of CMCNa and the microencapsulation efficiency of ca. 100% could be obtained by the preparation method presented in this study. The microcapsules were found to be eaten well by tropical fishes and to prevent water environmental pollution.
文摘Biological macromolecules, such as proteins and polysaccharides, are widely used in food systems because their interactions impart a desirable texture to food products. Plant proteins interact with food components via protein-protein and protein-polysaccharide associations, and the formation of a matrix, which can entrap other food components such as water, lipids and flavors. These networks provide structural integrity to food products and can serve as important functional ingredients in processed foods. Intermolecular interactions of typical polysaccharides result either in simple associations or in the form of a double or triple helix. The linear double helical segments may then interact to form a super junction and a three-dimensional gel network. The formation of these structural networks takes place during processing and involves the transformation from a liquid or viscous sol into a solid material with elastic properties. Interests in the behavior of mixed gels center on the prospects of enhanced flexibility in their mechanical and structural properties compared to those of pure gels. Findings on molecular interactions between plant proteins (e.g., soy, canola and pea proteins) and polysaccharides (e.g., guar gum, carrageenan, and pectin) allow for the modification of physical and textural characteristics of mixed biopolymers to meet desired functional property.
基金support from the National Natural Science Foundation of China (22222808, 21978200)the Haihe Laboratory of Sustainable Chemical Transformations for financial support
文摘Energetic nanofluid fuel has caught the attention of the field of aerospace liquid propellant for its high energy density(HED), but it suffers from the inevitable solid-liquid phase separation problem. To resolve this problem, herein we synthesized the high-Al-/B-containing(up to 30%(mass)) HED gelled fuels, with low-molecular-mass organic gellant Z, which show high net heat of combustion(NHOC), density, storage stability, and thixotropic properties. The characterizations indicate that the application of energetic particles to the gelled fuels obviously destroys their fibrous network structures but can provide the new particle-gellant gelation microstructures, resulting in the comparable stability between 1.0%(mass) Z/JP-10 + 30%(mass) Al or B and pure JP-10 gelled fuel. Moreover, the gelled fuels with high-content Al or B exhibit high shear-thinning property, recovery capability, and mechanical strength, which are favorable for their storage and utilization. Importantly, the prepared 1.0%(mass) Z/JP-10 + 30%(mass) B(or 1.0%(mass) Z/JP-10 + 30%(mass) Al) shows the density and NHOC 1.27 times(1.30) and 1.43 times(1.21)higher than pure JP-10, respectively. This work provides a facile and valid approach to the manufacturing of HED gelled fuels with high content of energetic particles for gel propellants.
基金Project supported by the National Natural Science Foundation of China (No. 20373072).
文摘Disodium hydrogen phosphate dodecahydrate (Na2HPO4·12H2O) is an attractive candidate for phase change materials. The main problem for its practical use comes from incongruent melting character during thermal cycling. Experimentally, heat of fusion of the pure salt decreased from 200 to 25 jog 1 in a four-run freeze-thaw cycling. Additives such as thickening agent or in-situ synthesized polyacrylate sodium in the molten salt can prevent its phase separation to some extent. In the test, sodium alginate 3.0%-5.0% (w/w) thickened mixture containing Na2HPOn·12H2O and some water showed constant heat storage capacities. Polyacrylate sodium gelled salt was synthesized through polymerizing sodium acrylate in the melt of Na2HPOn·12H2O and some extra water at 50 ℃. Optimum conditions composed of sodium acrylate 3.0%-5.0% (w/w), cross-linking agent N,N-methylenebis-acrylamide 0.10%-0.20% (w/w), K2S208 and Na2SO3 (mass ratio 1 ; 1) 0.06%-0.12% (w/w). As opposed to normal large crystals of pure Na2HPOn·12H2O in solid state, the gelled salt existed in a large number of tiny particles dispersed in the gel network at room temperature, commonly less than 2 mm. But only those sample particles with sizes less than 0.2 mm may have relatively stable thermal storage property. A problem encountered was the poor reproducibility of the synthesis method: heat storage capacity of the product was often very different even though the synthesis was carried out in the same conditions. An alternative gelling method by sodium alginate grafted sodium acrylate was tried and it showed a fairly good effect. Heat capacities and heat of fusion of Na2HPO4·12H2O were measured by an adiabatic calorimeter.
基金(Grants No. 00040486) was supported by Business for Cooperative R&D between Industry, AcademyResearch Institute funded Korea Small and Medium Business Administration in 2010
文摘Gel propulsion systems have many advantages with respect to high performance, the energy management of liquid propulsion systems, storability, high density impulse, and low leakage of liquid propellants. The atomization process provides sufficient contact surface area between the gelled fuel and oxidizer jets. It is important to study how injection characteristics of gelled propellants are related with break-up and spray distribution. The break-up and mixing processes are very important in achieving maximum efficiency and necessitate the careful study of combustion instability. Gelled propellants are non-Newtonian fluids in which the viscosity is a function of the shear rate, and they have a high dynamic shear viscosity which depends on the amount of gelling agent contents. The present study has focused on the break-up process, wave development of ligament and liquid sheets formed by impinging jets with various gelling agent contents. Especially, the break-up processes of the impinging jets at the initial conditions are studied. The break-up process of like-on-like doublet impinging jets are experimentally characterized using non-Newtonian liquids which are mixed by ionized water 98.5 wt%, Carbopol 941 0.5wt% or 1.0wt%, and NaOH(concentration 10%) 1.0wt%. For the like-on-like doublet injector, the generation of a liquid sheet at the impinging point of two jets was observed. The spray shape with elliptical pattern is distributed in a perpendicular direction to the momentum vectors of the jets. Gelled propellant simulants with high viscosity jets are more stable and produce less pronounced surface waves than low viscosity jets. Generally, the break-up length decreased due to the increasing Reynolds number. However, surface waves and atomized droplets increased. Gelled propellant simulants from like-on-like doublet impinging jets have the spray shape of closed rim patterns at low pressure. Also, the rim patterns of spray have no disturbances on the spray sheet. As the injection pressure increased, rimless patterns which were composed of ligament sheets and small droplets emerged due to the effect of the aerodynamic action. Periodic wave-like structures observed from the near impingement point and atomized droplets were observed at a location further downstream.
基金V. ACKNOWLEDGMENTS This work was supported by the Innovative Research Team of green chemical technology in University of Heilongjiang Province, the Natural Science Foundation of Heilongjiang Province of China (No.B201007 and No.E201141), Harbin Innovation Talents of Science and Technology of Special Fund Project (No.2012RFQXG085), and Educational Commission of Heilongjiang Province of China (No.12521z008 and No.12511443).
文摘The gel polymer electrolyte containing N-propyl, methylpyrrolidinium bis((trifiuoromethyl) sulfonyl)imide (PYR13TFSI) with better performance is prepared by radical polymerization method. The interface status between the LiFePO4 electrode and the electrolyte is characterized by a scanning electron microscope and X-ray photoelectron spectroscopy (XPS). There is a layer of membrane on the gel electrolyte and perfect shell membranes on the surface of active LiFePO4 cluster, on the other hand, N and S photoelectron signals are observed in XPS spectra after charge-discharge cycles. The results show that the ionic liquids and unpolymerized methyl methacrylate incorporate into the electrode surface and form the SEI membrane with Li ion and electrons while the gel electrolyte contacts with the electrode. The formation process of the SEI membrane needs at least three cycles, the discharge capacity increases as the SEI membrane becomes sufficiently thick, which blocks further electron transfer, and the system may approach steady state. The performance of cell with ionic liquid gel polymer electrolyte is measured at different rate. The cells retain 132 mAh/g at 0.2 C, 128 mAh/g at 0.5 C, and 120 mAh/g at 1.0 C after 30 cycles with charge-discharge efficiency of ca. 98% at every rate.
基金Vivekanand Education Society’s College of Pharmacy, Chembur, Mumbai, for their support and encouragement
文摘Skin is considered as an important route of administration of drugs for both local and systemic effects. The effectiveness of topical therapy depends on the physicochemical properties of the drug and adherence of the patient to the treatment regimen as well as the system’s ability to adhere to skin during the therapy so as to promote drug penetration through the skin barrier.Conventional formulations for topical and dermatological administration of drugs have certain limitations like poor adherence to skin, poor permeability and compromised patient compliance.For the treatment of diseases of body tissues and wounds, the drug has to be maintained at the site of treatment for an effective period of time. Topical film forming systems are such developing drug delivery systems meant for topical application to the skin, which adhere to the body, forming a thin transparent film and provide delivery of the active ingredients to the body tissue. These are intended for skin application as emollient or protective and for local action or transdermal penetration of medicament for systemic action. The transparency is an appreciable feature of this polymeric system which greatly influences the patient acceptance.In the current discussion, the film forming systems are described as a promising choice for topical and transdermal drug delivery. Further the various types of film forming systems (sprays/solutions, gels and emulsions) along with their evaluation parameters have also been reviewed.
文摘Itraconazole (ITZ) is a broad spectrum triazole antifungal drug and commercially available as oral forms. However, effective topical forms are interesting to avoid systemic adverse effects,to directly deliver antifungal drugs to the target sites and to enhance patient compliance (1)Microemulsion-based hydrogel (MBH), a semisolid form of microemulsion (ME), is one of novel formulations practically used as topical drug carriers [2].
基金Supported by National Natural Science Foundation(50474019)Specific Science Research Plan in Education of Shaanxi Province of China(05Jk257)
文摘The present seal form is restricted by itself, so pilot study in new-style seal-filling hydrogel by choosing acrylamide as absorb-water performance monomer with binary solution hybrid method was carried out. The feasibility of using new-style seal-filling hydrogel to build hermetic wall rapidly was indicated from results. Gelling time of seal-filling hydrogel was influenced by gelling temperature, initiator concentration and accelerator content. Gelling time decreased by 1/3~1/2 times as gelling temperature increased by each 10℃. Gelling time was proportional to 1/2 power of initiator concentration, and was linear of accelerator content with one power. Addition, deformation rate of seal-filling hydrogel depended on monomer content, cross linking agent concentration, accelerator content. And staggered change of elastic modulus was come forth, its demar cation points generally appeared at the value of 50% of vertical deformation.
文摘The study carried out here was focused on developing conventional monolithic controlled release matrix tablet of Atorvastatin calcium using carbomer as release controlling polymer. This system ensures the drug release at the alkaline pH region where the drug has got maximum solubility. Further the study was concentrated on comparing the impact of gelling agent polyvinyl pyrrolidone on drug release. Quality by design tools were considered during formulation development and the polymer concentrations were optimized adopting the statistical tool, design of experiments (DoE). The optimized formulation of present study exhibited desired controlled drug release characteristics in the alkaline pH conditions and at acidic environment the drug dissolution was minimal as intended.
文摘The aim of this work was to develop a functional biodegradable nonwoven with antimicrobial microcapsules maintaining the stability and biodegradability of the nonwoven for use in agriculture applications. The nonwoven was obtained using hemp fibers by Wetlaid technology. Microcapsules were prepared by co-extrusion/gelling method with alginate as shell and oregano oil as core material. The microcapsules were developed to protect and control release of oregano oil. Microcapsules were incorporated on the nonwoven by coating method using a natural polymer as a graft material. After incorporating micro-capsules, the nonwoven was subjected to several tests in order to determinate the microcapsules fixation and their functionality. The nonwovens were characterized for their antimicrobial activity against different kinds of bacteria and fungi. Nonwoven loaded with microcapsules was found to show good antimicrobial activity in comparison with nonwoven that was not loaded with microcapsules.
文摘The upper part of the Fujia deposit was mined out by open-pit, and the lower part is being mined underground. The level pillar between open-pit and underground mine had a thickness of 24 m, a length of 300 m and a maximum width of 35 in. As the level pillar contained about 5.2 million ton ore of high nickel grade, it was necessary to recover the level pillar. Because of special need of safety, underhand heading cut-and-fill stoping method was used. For the first two layers of heading, the cemented fill materials were a mix of water and high-aluminum-content cement with silicate gelling agent; and for other heading layers, total tailings was added into the fill mix in order to reduce the cement consumption. Finally, the level pillar was recovered successfully.