Objective To explore the role of HIV-1 tat gene variations in AIDS dementia complex (ADC) pathogenesis. Methods HIV-1 tat genes derived from peripheral spleen and central basal ganglia of an AIDS patient with ADC an...Objective To explore the role of HIV-1 tat gene variations in AIDS dementia complex (ADC) pathogenesis. Methods HIV-1 tat genes derived from peripheral spleen and central basal ganglia of an AIDS patient with ADC and an AIDS patient without ADC were cloned for sequence analysis. HIV-1 tat gene sequence alignment was performed by using CLUSTAL W and the phylogentic analysis was conducted by using Neighbor-joining with MEGA4 software. All tat genes were used to construct recombinant retroviral expressing vector MSCV-IRES-GFP/tat. The MSCV-IRES-GFP/tat was cotransfected into 293T cells with pCMV-VSV-G and pUMVC vectors to assemble the recombinant retrovirus. After infection of gliomas U87 cells with equal amount of the recombinant retrovirus, TNF-α, and IL-1β concentrations in the supernatant of U87 cells were determined with ELISA. Results HIV-1 tat genes derived from peripheral spleen and central basal ganglia of the AIDS patient with ADC and the other one without ADC exhibited genetic variations. Tat variations and amino acid mutation sites existed mainly at Tat protein core functional area (38-47aa). All Tat proteins could induce ug7 cells to produce TNF-α and IL-1β, but the level of IL-1β production was different among Tat proteins derived from the ADC patient's spleen, basal ganglia, and the non-ADC patient's spleen. The level of Tat proteins derived from the ADC patient's spleen, basal ganglia, and the non-ADC patient's spleen were obviously higher than that from the non-ADC patient's basal ganglia. Conclusion Tat protein core functional area (38-47aa) may serve as the key area of enhancing the secretion of IL-1β. This may be related with the neurotoxicity of HIV-1 Tat.展开更多
Although the endogenous function of Tat has been elucidated in the past twenty years, the study of its exogenous activity has been hampered due to the difficulty of large scale preparation of the active Tat protein. T...Although the endogenous function of Tat has been elucidated in the past twenty years, the study of its exogenous activity has been hampered due to the difficulty of large scale preparation of the active Tat protein. To express the full-length Tat protein in E.coli, the tat gene was cloned from an HIV infected patient by overlapping PCR. Rare codon usage analysis showed that rare E.coli codons, especially consecutive rare codons for Arg, account for 14% (14 of 101) rare E.coli codons in the tat gene. The expression of the HIV-1 tat gene was verified to be very poor in strain BL21 (DE3) due to the abundance of rare codons; however, tat gene expression was found to be very efficient in the host strain of Rosetta-gami B (DE3), which was supplemented with six rare tRNAs for Arg, Leu, Ile and Pro. Subsequent purification revealed that the proteins are soluble and unusually, the tagged Tat can form dimers independent of cystine disulfide bonds. The purity, integrity and molecular weight of the Tat protein were demonstrated by MALDI-TOF mass spectrometry. Reporter gene activating assay was further confirmed by investigating the transactivation activity of the recombinant Tat protein. Our improved strategy for efficient high level expression and purification of soluble Tat protein has paved the way to fully investigate its exogenous function.展开更多
Alzheimer’s disease is a progressive neurodegenerative disorder and the most common cause of dementia that principally affects older adults.Pathogenic factors,such as oxidative stress,an increase in acetylcholinester...Alzheimer’s disease is a progressive neurodegenerative disorder and the most common cause of dementia that principally affects older adults.Pathogenic factors,such as oxidative stress,an increase in acetylcholinesterase activity,mitochondrial dysfunction,genotoxicity,and neuroinflammation are present in this syndrome,which leads to neurodegeneration.Neurodegenerative pathologies such as Alzheimer’s disease are considered late-onset diseases caused by the complex combination of genetic,epigenetic,and environmental factors.There are two main types of Alzheimer’s disease,known as familial Alzheimer’s disease(onset<65 years)and late-onset or sporadic Alzheimer’s disease(onset≥65 years).Patients with familial Alzheimer’s disease inherit the disease due to rare mutations on the amyloid precursor protein(APP),presenilin 1 and 2(PSEN1 and PSEN2)genes in an autosomaldominantly fashion with closely 100%penetrance.In contrast,a different picture seems to emerge for sporadic Alzheimer’s disease,which exhibits numerous non-Mendelian anomalies suggesting an epigenetic component in its etiology.Importantly,the fundamental pathophysiological mechanisms driving Alzheimer’s disease are interfaced with epigenetic dysregulation.However,the dynamic nature of epigenetics seems to open up new avenues and hope in regenerative neurogenesis to improve brain repair in Alzheimer’s disease or following injury or stroke in humans.In recent years,there has been an increase in interest in using natural products for the treatment of neurodegenerative illnesses such as Alzheimer’s disease.Through epigenetic mechanisms,such as DNA methylation,non-coding RNAs,histone modification,and chromatin conformation regulation,natural compounds appear to exert neuroprotective effects.While we do not purport to cover every in this work,we do attempt to illustrate how various phytochemical compounds regulate the epigenetic effects of a few Alzheimer’s disease-related genes.展开更多
Goji berry(Lycium barbarum L.)is substantially dependent on nitrogen fertilizer application,which can signifi-cantly enhance fruit yield and Goji berry industrial development in Ningxia,China.This study aimed to analyz...Goji berry(Lycium barbarum L.)is substantially dependent on nitrogen fertilizer application,which can signifi-cantly enhance fruit yield and Goji berry industrial development in Ningxia,China.This study aimed to analyze the functions of differential nitrogen application rates including low(N1),medium(N2),and high(N3)levels in soil microbial community structure(bacterial and fungal)at 2 diverse soil depths(0-20,20-40 cm)through high-throughput sequencing technology by targeting 16S RNA gene and ITS1&ITS2 regions.All the observed physicochemical parameters exhibited significant improvement(p<0.05)with increased levels of nitrogen and the highest values for most parameters were observed at N2.However,pH decreased(p<0.05)gradually.The alpha and beta diversity analyses for bacterial and fungal communities’metagenome displayed more similarities than differences among all groups.The top bacterial and fungal phyla and genera suggested no obvious(p>0.05)differences among three group treatments(N1,N2,and N3).Furthermore,the functional enrichment analysis demonstrated significant(p<0.05)enrichment of quorum sensing,cysteine and methionine metabolism,and transcriptional machinery for bacterial communities,while various saprotrophic functional roles for fungal communities.Conclusively,moderately reducing the use of N-supplemented fertilizers is conducive to increasing soil nitrogen utilization rate,which can contribute to sustainable agriculture practices through improved soil quality,and microbial community structure and functions.展开更多
The use of pan-ethnic-group products form knowledge primarily depends on a designer's subjective experience without user participation. The majority of studies primarily focus on the detection of the perceptual deman...The use of pan-ethnic-group products form knowledge primarily depends on a designer's subjective experience without user participation. The majority of studies primarily focus on the detection of the perceptual demands of consumers from the target product category. A pan-ethnic-group products form gene clustering method based on emotional semantic is constructed. Consumers' perceptual images of the pan-ethnic-group products are obtained by means of product form gene extraction and coding and computer aided product form clustering technology. A case of form gene clustering about the typical pan-ethnic-group products is investigated which indicates that the method is feasible. This paper opens up a new direction for the future development of product form design which improves the agility of product design process in the era of Industry 4.0.展开更多
AIMTo investigate the association of receptor for advanced glycation end products (RAGE) G82S and vascular endothelial growth factor (VEGF) -634 G/C gene polymorphisms with diabetic retinopathy (DR).METHODSOur cross-s...AIMTo investigate the association of receptor for advanced glycation end products (RAGE) G82S and vascular endothelial growth factor (VEGF) -634 G/C gene polymorphisms with diabetic retinopathy (DR).METHODSOur cross-sectional study included 61 diabetic patients, 12 of them had proliferative diabetic retinopathy (PDR), 15 had non proliferative diabetic retinopathy (NPDR), 34 had no diabetic retinopathy (NDR) and 61 healthy controls. Participants were tested for RAGE G82S and VEGF -634 G/C polymorphisms by polymerase chain reaction-restriction fragment length polymorphism.RESULTSWe found a significant association between VEGF -634 G/C polymorphism and PDR as PDR patients had increased incidence of VEGF -634 CC genotype compared to NDR patients [odds ratio for CC vs (GC+GG)=6.5, 95% CI=1.5-27.8, P=0.021]. Also VEGF -634 CC genotype and C allele were significantly higher in the PDR than in NPDR patients, which is a novel finding in our study (P=0.024, 0.009 respectively). The mean triglycerides level was significantly higher in diabetic patients with CC genotype (P=0.01) as compared to patients with other genotypes. All cases and control subjects were of the same heterozygous RAGE 82G/S genotype.CONCLUSIONPatients carrying VEGF -634 C polymorphism have a higher risk of PDR development, so VEGF -634 G/C polymorphism could be used as a predictive marker for PDR in diabetic patients. We could not find a significant association between RAGE G82S polymorphism and DR.展开更多
To investigate the effect of P53 protein accumulation and p53 gene mutation in the pathogenesis of glioma and to study the role of MDM2, P53 and P16 protein in glioma formation and progression and their relationship w...To investigate the effect of P53 protein accumulation and p53 gene mutation in the pathogenesis of glioma and to study the role of MDM2, P53 and P16 protein in glioma formation and progression and their relationship with each other, LSAB immunohistochemical staining method and non-isotopic PCR-SSCP techniques were used to detect the expression of MDM2, P53 and P16 protein and p53 gene mutation in 48 cases of gliomas. The results showed that the positive expression rate of MDM2, P53 and the negative rate of P16 was 22.9 %, 41.7 % and 60.4 %, respectively. The latter two in high grade (grade Ⅲ , Ⅳ) gliomas had a significantly higher rate than in the low grade (grade Ⅱ ) gliomas. Moreover, the co-expression of MDM2 and P53 protein was confirmed in only 1 of 48 cases. No significant difference was found in the rate of the expression of MDM2 between high grade and low grade gliomas (P〉0.1) . PCR-SSCP results showed that mutation of 5 --8 exons of p53 gene was detected in 17 out of 48 cases (35.42 %) . Mutation was detected in 16 of 20 cases of positive p53 expression, and another one was detected in 28 cases of negative expression cases. The correlation between p53 mutation and p53 immunopositivity was observed in 89.6 % of the cases. P53 gene mutation and the level of MDM2, P53 and PI6 protein were not related to age, gender of the patients, tumor location and size. It is concluded that the mutation of p53 and deletion of p16 might play important roles in the tumorigenesis of gliomas and it was significantly associated with the grade of tumor differentiation. P53 protein accumulation can indirectly reflect p53 mutation. MDM2 amplification and overexpression might be an early event in the growth of human gliomas.展开更多
Background:Egg production is economically important in the meat-type chicken industry.To better understand the molecular genetic mechanism of egg production in meat-type chicken,genetic parameter estimation,genome-wid...Background:Egg production is economically important in the meat-type chicken industry.To better understand the molecular genetic mechanism of egg production in meat-type chicken,genetic parameter estimation,genome-wide association analyses combined with meta-analyses,Bayesian analyses,and selective sweep analyses were performed to screen single nucleotide polymorphisms(SNPs)and other genetic loci that were significantly associated with egg number traits in 11,279 chickens from seven material lines.Results:Yellow-feathered meat-type chickens laid 115 eggs at 43 weeks of age and white-feathered chickens laid 143 eggs at 60 weeks of age,with heritability ranging from 0.034–0.258.Based on meta-analyses and selective sweep analyses,one region(10.81–13.05 Mb)on chromosome Z was associated with egg number in all lines.Further analyses using the W2 line was also associated with the same region,and 29 SNPs were identified that significantly affected estimation of breeding value of egg numbers.The 29 SNPs were identified as having a significant effect on the egg number EBV in 3194 birds in line W2.There are 36 genes in the region,with glial cell derived neurotrophic factor,DAB adaptor protein 2,protein kinase AMP-activated catalytic subunit alpha 1,NAD kinase 2,mitochondrial,WD repeat domain 70,leukemia inhibitory factor receptor alpha,complement C6,and complement C7 identified as being potentially affecting to egg number.In addition,three SNPs(rs318154184,rs13769886,and rs313325646)associated with egg number were located on or near the prolactin receptor gene.Conclusion:Our study used genomic information from different chicken lines and populations to identify a genomic region(spanning 2.24 Mb)associated with egg number.Nine genes and 29 SNPs were identified as the most likely candidate genes and variations for egg production.These results contribute to the identification of candidate genes and variants for egg traits in poultry.展开更多
The main purpose of this study was to detect an association of cytoplasmic signal transducers and activators of transcription-1 (STAT1) with milk production traits in 472 Holstein and 283 Jersey cattle breeds of Tur...The main purpose of this study was to detect an association of cytoplasmic signal transducers and activators of transcription-1 (STAT1) with milk production traits in 472 Holstein and 283 Jersey cattle breeds of Turkey. This gene, located on chromosome 2, was chosen due to its role on development of mammary gland. A polymorphism of selected 314 bp allele fragment was detected by the restriction fragment length polymorphism analysis of polymerase chain reaction-amplified fragments (PCR-RFLP) method and also confirmed by DNA sequencing. The association tests were conducted between STAT1 genotypes and some economically important dairy traits. The genotypes for C/T as a single nucleotide polymorphism (SNP) were identified at interval 60 cM to 63 cM. The effects of STAT1 gene on milk production traits were not significant in Holstein cows, although animals with CT genotypes showed fairly close to significant value for the corrected 305 d milk yield. However, Jersey cows with/7" genotype were 2.07 kg higher for test-day milk yield (P 〈 0.05), 0.13 kg for fat yield (P 〈 0.01) and 0.07 kg for protein yield (P 〈 0.05) compared with animals having CC and CT genotypes. Definitely, the further research should be conducted to search this gene intensively with larger samples to identify polymorphism and any association between the economically important traits and genotypic class in Holstein cows. Finally, based on the findings, it was concluded that STATI gene might be used as a potential candidate gene to improve milk yield and milk fat and protein contents in dairy cows breeding programs.展开更多
In the blood fluke Schistosoma mansoni a functionally active, monomeric, phospholipid hydroperoxide glutathione peroxidase (PHGPx) has been purified and characterized. This enzyme contains a catalytically active selen...In the blood fluke Schistosoma mansoni a functionally active, monomeric, phospholipid hydroperoxide glutathione peroxidase (PHGPx) has been purified and characterized. This enzyme contains a catalytically active selenocysteine. The protein has been shown to be the product of a cloned gene, previously referred to as a glutathione peroxidase gene. S. mansoni PHGPx has been found 5 times more abundant in female than in male worm extract. As in vertebrate PHGPx, homology alignment indicates that the residues involved in the glutathione binding by the tetrameric cellular glutathione peroxidase are mutated in the S. mansoni enzyme. Thus, this aspect appears a landmark of the PHGPx-type of glutathione peroxidases,which might be of functional relevance展开更多
Chinese traditional medicine Danshen is the radix of the perennial herbs of Salvia miltiorrhiza Bunge, which has a variety of pharmacological effects and is traditionally and extensively applied clinically to treat ca...Chinese traditional medicine Danshen is the radix of the perennial herbs of Salvia miltiorrhiza Bunge, which has a variety of pharmacological effects and is traditionally and extensively applied clinically to treat cardiovascular disorders. In this research, the genomic genes for tyrosine aminotransferase (TAT) of 38 cultivated populations of Danshen in China were cloned and bioinformatic analyses were conducted to reveal its genetic diversity and phylogeny. The full-length SmTAT was 2296 - 2444 bp including 6 exons (encoding 411 amino acids) and 5 introns. Overall, the SmTAT genes in cultivated Danshen populations are highly conserved with a relative low level of genetic diversity. The spliced exons (1236 bp) had 23 SNP variations with a rate of 1.86%, of which 22 occurred in the white flower S. miltiorrhiza Bge.f.alba population (W-SCHY-W-1) and led to 5 amino acid variations. The entire 290 SNP variations with a rate of 24% in the 5 introns occurred exclusively in W-SCHY-W-1. Phylogenetic trees based on the full-length, combined introns, the spliced exons, and the deduced amino acid sequences of SmTAT all showed a two-clade basic structure with W-SCHY-W-1 uniquely standing alone. The SmTAT gene of the white flower population (W-SCHY-W-1) is unique and especially rich in variations. The first time clarified genomic SmTAT gene structure and genetic diversity in cultivated Danshen populations laid an excellent foundation for further studies on the biosynthesis of bioactives and the molecular breeding of Danshen as well as in plant tyrosine metabolism.展开更多
Background Dietary fat is important for energy provision and immune function of lactating sows and their progeny.However,knowledge on the impact of fat on mammary transcription of lipogenic genes,de novo fat synthesis...Background Dietary fat is important for energy provision and immune function of lactating sows and their progeny.However,knowledge on the impact of fat on mammary transcription of lipogenic genes,de novo fat synthesis,and milk fatty acid(FA)output is sparse in sows.This study aimed to evaluate impacts of dietary fat levels and FA composition on these traits in sows.Forty second-parity sows(Danish Landrace×Yorkshire)were assigned to 1 of 5 dietary treatments from d 108 of gestation until weaning(d 28 of lactation):low-fat control diet(3%added animal fat);or 1 of 4 high-fat diets with 8%added fat:coconut oil(CO),fish oil(FO),sunflower oil(SO),or 4%octanoic acid plus 4%FO(OFO).Three approaches were taken to estimate de novo milk fat synthesis from glucose and body fat.Results Daily intake of FA was lowest in low-fat sows within fat levels(P<0.01)and in OFO and FO sows within highfat diets(P<0.01).Daily milk outputs of fat,FA,energy,and FA-derived carbon reflected to a large extent the intake of those.On average,estimates for de novo fat synthesis were 82 or 194 g/d from glucose according to method 1 or 2 and 255 g de novo+mobilized FA/d according to method 3.The low-fat diet increased mammary FAS expression(P<0.05)and de novo fat synthesis(method 1;P=0.13)within fat levels.The OFO diet increased de novo fat synthesis(method 1;P<0.05)and numerically upregulated mammary FAS expression compared to the other high-fat diets.Across diets,a daily intake of 440 g digestible FA minimized milk fat originating from glucose and mobilized body fat.Conclusions Sows fed diets with low-fat or octanoic acid,through upregulating FAS expression,increased mammary de novo fat synthesis whereas the milk FA output remained low in sows fed the low-fat diet or high-fat OFO or FO diets,indicating that dietary FA intake,dietary fat level,and body fat mobilization in concert determine de novo fat synthesis,amount and profiles of FA in milk.展开更多
Background Proteins or peptides can be directly transferred into cells when covalently linked to protein transduction domains (PTDs). TAT is one of the most widely studied PTDs. The effect of fusion protein TAT and ...Background Proteins or peptides can be directly transferred into cells when covalently linked to protein transduction domains (PTDs). TAT is one of the most widely studied PTDs. The effect of fusion protein TAT and heme oxygenase-1 (HO-1) on liver sinusoidal endothelial cells (SECs) apoptosis during cold storage is unknown. The present study aimed to determine whether fusion protein TAT-HO-1 would transduce efficiently into liver during cold storage, and, if so, to determine whether TAT-HO-1 would attenuate SECs apoptosis during preservation injury in rat. Methods Livers of Sprague-Dawley rats were harvested and randomly assigned to group 1 (HTK solution) and group 2 (HTK solution containing TAT-HO-1 fusion protein) according to the type of the preservation solution. The transduction efficiency of TAT-HO-1 was examined and the impairment of SECs was assessed during the period of cold storage followed by 1 hour of reperfusion. Results TAT-HO-1 can transduce efficiently into liver during cold storage. A significantly lower apoptotic index of SECs was observed in group 2, at 6, 12 and 18 hours of cold storage after 1 hour reperfusion, when compared with group 1. TAT-HO-1 reduced HA and ET levels in liver at each time point. Both Bcl-2 and Bax protein were expressed in hepatocytes and SECs at the periphery of the sinusoidal space. Moreover, higher Bcl-2 expression and lower Bax expression were observed in group 2. Conclusions TAT-HO-1 can transduce efficiently into rat livers and shows a protective effect on SECs by attenuating apoptosis during cold ischemia/reperfusion injury. Protein transduction will be a novel therapeutic strategy to reduce the risk of preservation injury in liver transplantation.展开更多
Objective To study the regulatory framework of advanced therapies in the European Union and the United States,and to provide reference for the regulation of cell-and gene-based therapeutic products in China.Methods Th...Objective To study the regulatory framework of advanced therapies in the European Union and the United States,and to provide reference for the regulation of cell-and gene-based therapeutic products in China.Methods The legal and regulatory documents,annual reports,work information and related literature published on the websites of the FDA and European Medicines Agency(EMA)were reviewed to analyze the regulatory models of advanced therapies in the European Union and the United States.Results and Conclusion the United States and the European Union have carried out a lot of work in the classification standards of advanced therapies,policy formulation and accelerated listing procedures.Therefore,they have established a relatively mature regulatory system.China can learn from their experience and continuously improve the regulatory system to help the sustainable development of gene and cell therapy industry.展开更多
基金supported by the Science&Technology Development Program of Shandong Province(Grant No.2007GG30002003)
文摘Objective To explore the role of HIV-1 tat gene variations in AIDS dementia complex (ADC) pathogenesis. Methods HIV-1 tat genes derived from peripheral spleen and central basal ganglia of an AIDS patient with ADC and an AIDS patient without ADC were cloned for sequence analysis. HIV-1 tat gene sequence alignment was performed by using CLUSTAL W and the phylogentic analysis was conducted by using Neighbor-joining with MEGA4 software. All tat genes were used to construct recombinant retroviral expressing vector MSCV-IRES-GFP/tat. The MSCV-IRES-GFP/tat was cotransfected into 293T cells with pCMV-VSV-G and pUMVC vectors to assemble the recombinant retrovirus. After infection of gliomas U87 cells with equal amount of the recombinant retrovirus, TNF-α, and IL-1β concentrations in the supernatant of U87 cells were determined with ELISA. Results HIV-1 tat genes derived from peripheral spleen and central basal ganglia of the AIDS patient with ADC and the other one without ADC exhibited genetic variations. Tat variations and amino acid mutation sites existed mainly at Tat protein core functional area (38-47aa). All Tat proteins could induce ug7 cells to produce TNF-α and IL-1β, but the level of IL-1β production was different among Tat proteins derived from the ADC patient's spleen, basal ganglia, and the non-ADC patient's spleen. The level of Tat proteins derived from the ADC patient's spleen, basal ganglia, and the non-ADC patient's spleen were obviously higher than that from the non-ADC patient's basal ganglia. Conclusion Tat protein core functional area (38-47aa) may serve as the key area of enhancing the secretion of IL-1β. This may be related with the neurotoxicity of HIV-1 Tat.
基金This work was supported by a grant fromthe International Atomic Energy Agency (IAEA) (grantNo: 12510/R1) a grant from the Chinese NationalNatural Science Foundation (grant No: 30400120)
文摘Although the endogenous function of Tat has been elucidated in the past twenty years, the study of its exogenous activity has been hampered due to the difficulty of large scale preparation of the active Tat protein. To express the full-length Tat protein in E.coli, the tat gene was cloned from an HIV infected patient by overlapping PCR. Rare codon usage analysis showed that rare E.coli codons, especially consecutive rare codons for Arg, account for 14% (14 of 101) rare E.coli codons in the tat gene. The expression of the HIV-1 tat gene was verified to be very poor in strain BL21 (DE3) due to the abundance of rare codons; however, tat gene expression was found to be very efficient in the host strain of Rosetta-gami B (DE3), which was supplemented with six rare tRNAs for Arg, Leu, Ile and Pro. Subsequent purification revealed that the proteins are soluble and unusually, the tagged Tat can form dimers independent of cystine disulfide bonds. The purity, integrity and molecular weight of the Tat protein were demonstrated by MALDI-TOF mass spectrometry. Reporter gene activating assay was further confirmed by investigating the transactivation activity of the recombinant Tat protein. Our improved strategy for efficient high level expression and purification of soluble Tat protein has paved the way to fully investigate its exogenous function.
文摘Alzheimer’s disease is a progressive neurodegenerative disorder and the most common cause of dementia that principally affects older adults.Pathogenic factors,such as oxidative stress,an increase in acetylcholinesterase activity,mitochondrial dysfunction,genotoxicity,and neuroinflammation are present in this syndrome,which leads to neurodegeneration.Neurodegenerative pathologies such as Alzheimer’s disease are considered late-onset diseases caused by the complex combination of genetic,epigenetic,and environmental factors.There are two main types of Alzheimer’s disease,known as familial Alzheimer’s disease(onset<65 years)and late-onset or sporadic Alzheimer’s disease(onset≥65 years).Patients with familial Alzheimer’s disease inherit the disease due to rare mutations on the amyloid precursor protein(APP),presenilin 1 and 2(PSEN1 and PSEN2)genes in an autosomaldominantly fashion with closely 100%penetrance.In contrast,a different picture seems to emerge for sporadic Alzheimer’s disease,which exhibits numerous non-Mendelian anomalies suggesting an epigenetic component in its etiology.Importantly,the fundamental pathophysiological mechanisms driving Alzheimer’s disease are interfaced with epigenetic dysregulation.However,the dynamic nature of epigenetics seems to open up new avenues and hope in regenerative neurogenesis to improve brain repair in Alzheimer’s disease or following injury or stroke in humans.In recent years,there has been an increase in interest in using natural products for the treatment of neurodegenerative illnesses such as Alzheimer’s disease.Through epigenetic mechanisms,such as DNA methylation,non-coding RNAs,histone modification,and chromatin conformation regulation,natural compounds appear to exert neuroprotective effects.While we do not purport to cover every in this work,we do attempt to illustrate how various phytochemical compounds regulate the epigenetic effects of a few Alzheimer’s disease-related genes.
基金This work was funded by Ningxia Hui Autonomous Region Key Research and Development Project(2021BEF02004),Central Finance Forestry Reform and Development Fund“Forest Seed Cultivation”.
文摘Goji berry(Lycium barbarum L.)is substantially dependent on nitrogen fertilizer application,which can signifi-cantly enhance fruit yield and Goji berry industrial development in Ningxia,China.This study aimed to analyze the functions of differential nitrogen application rates including low(N1),medium(N2),and high(N3)levels in soil microbial community structure(bacterial and fungal)at 2 diverse soil depths(0-20,20-40 cm)through high-throughput sequencing technology by targeting 16S RNA gene and ITS1&ITS2 regions.All the observed physicochemical parameters exhibited significant improvement(p<0.05)with increased levels of nitrogen and the highest values for most parameters were observed at N2.However,pH decreased(p<0.05)gradually.The alpha and beta diversity analyses for bacterial and fungal communities’metagenome displayed more similarities than differences among all groups.The top bacterial and fungal phyla and genera suggested no obvious(p>0.05)differences among three group treatments(N1,N2,and N3).Furthermore,the functional enrichment analysis demonstrated significant(p<0.05)enrichment of quorum sensing,cysteine and methionine metabolism,and transcriptional machinery for bacterial communities,while various saprotrophic functional roles for fungal communities.Conclusively,moderately reducing the use of N-supplemented fertilizers is conducive to increasing soil nitrogen utilization rate,which can contribute to sustainable agriculture practices through improved soil quality,and microbial community structure and functions.
基金Supported by National Key Technology R&D Program,China(Grant No.2015BAH21F01)National 111 Project,China(Grant No.B13044)
文摘The use of pan-ethnic-group products form knowledge primarily depends on a designer's subjective experience without user participation. The majority of studies primarily focus on the detection of the perceptual demands of consumers from the target product category. A pan-ethnic-group products form gene clustering method based on emotional semantic is constructed. Consumers' perceptual images of the pan-ethnic-group products are obtained by means of product form gene extraction and coding and computer aided product form clustering technology. A case of form gene clustering about the typical pan-ethnic-group products is investigated which indicates that the method is feasible. This paper opens up a new direction for the future development of product form design which improves the agility of product design process in the era of Industry 4.0.
文摘AIMTo investigate the association of receptor for advanced glycation end products (RAGE) G82S and vascular endothelial growth factor (VEGF) -634 G/C gene polymorphisms with diabetic retinopathy (DR).METHODSOur cross-sectional study included 61 diabetic patients, 12 of them had proliferative diabetic retinopathy (PDR), 15 had non proliferative diabetic retinopathy (NPDR), 34 had no diabetic retinopathy (NDR) and 61 healthy controls. Participants were tested for RAGE G82S and VEGF -634 G/C polymorphisms by polymerase chain reaction-restriction fragment length polymorphism.RESULTSWe found a significant association between VEGF -634 G/C polymorphism and PDR as PDR patients had increased incidence of VEGF -634 CC genotype compared to NDR patients [odds ratio for CC vs (GC+GG)=6.5, 95% CI=1.5-27.8, P=0.021]. Also VEGF -634 CC genotype and C allele were significantly higher in the PDR than in NPDR patients, which is a novel finding in our study (P=0.024, 0.009 respectively). The mean triglycerides level was significantly higher in diabetic patients with CC genotype (P=0.01) as compared to patients with other genotypes. All cases and control subjects were of the same heterozygous RAGE 82G/S genotype.CONCLUSIONPatients carrying VEGF -634 C polymorphism have a higher risk of PDR development, so VEGF -634 G/C polymorphism could be used as a predictive marker for PDR in diabetic patients. We could not find a significant association between RAGE G82S polymorphism and DR.
文摘To investigate the effect of P53 protein accumulation and p53 gene mutation in the pathogenesis of glioma and to study the role of MDM2, P53 and P16 protein in glioma formation and progression and their relationship with each other, LSAB immunohistochemical staining method and non-isotopic PCR-SSCP techniques were used to detect the expression of MDM2, P53 and P16 protein and p53 gene mutation in 48 cases of gliomas. The results showed that the positive expression rate of MDM2, P53 and the negative rate of P16 was 22.9 %, 41.7 % and 60.4 %, respectively. The latter two in high grade (grade Ⅲ , Ⅳ) gliomas had a significantly higher rate than in the low grade (grade Ⅱ ) gliomas. Moreover, the co-expression of MDM2 and P53 protein was confirmed in only 1 of 48 cases. No significant difference was found in the rate of the expression of MDM2 between high grade and low grade gliomas (P〉0.1) . PCR-SSCP results showed that mutation of 5 --8 exons of p53 gene was detected in 17 out of 48 cases (35.42 %) . Mutation was detected in 16 of 20 cases of positive p53 expression, and another one was detected in 28 cases of negative expression cases. The correlation between p53 mutation and p53 immunopositivity was observed in 89.6 % of the cases. P53 gene mutation and the level of MDM2, P53 and PI6 protein were not related to age, gender of the patients, tumor location and size. It is concluded that the mutation of p53 and deletion of p16 might play important roles in the tumorigenesis of gliomas and it was significantly associated with the grade of tumor differentiation. P53 protein accumulation can indirectly reflect p53 mutation. MDM2 amplification and overexpression might be an early event in the growth of human gliomas.
基金the Guangdong Provincial Key Research and Development Program(2020B02022002)the Shandong Agricultural Seed Improvement Project(2020LZGC013)the Technological Innovation Project of Chinese Academy of Agricultural Sciences(CAAS-ZDRW202005)。
文摘Background:Egg production is economically important in the meat-type chicken industry.To better understand the molecular genetic mechanism of egg production in meat-type chicken,genetic parameter estimation,genome-wide association analyses combined with meta-analyses,Bayesian analyses,and selective sweep analyses were performed to screen single nucleotide polymorphisms(SNPs)and other genetic loci that were significantly associated with egg number traits in 11,279 chickens from seven material lines.Results:Yellow-feathered meat-type chickens laid 115 eggs at 43 weeks of age and white-feathered chickens laid 143 eggs at 60 weeks of age,with heritability ranging from 0.034–0.258.Based on meta-analyses and selective sweep analyses,one region(10.81–13.05 Mb)on chromosome Z was associated with egg number in all lines.Further analyses using the W2 line was also associated with the same region,and 29 SNPs were identified that significantly affected estimation of breeding value of egg numbers.The 29 SNPs were identified as having a significant effect on the egg number EBV in 3194 birds in line W2.There are 36 genes in the region,with glial cell derived neurotrophic factor,DAB adaptor protein 2,protein kinase AMP-activated catalytic subunit alpha 1,NAD kinase 2,mitochondrial,WD repeat domain 70,leukemia inhibitory factor receptor alpha,complement C6,and complement C7 identified as being potentially affecting to egg number.In addition,three SNPs(rs318154184,rs13769886,and rs313325646)associated with egg number were located on or near the prolactin receptor gene.Conclusion:Our study used genomic information from different chicken lines and populations to identify a genomic region(spanning 2.24 Mb)associated with egg number.Nine genes and 29 SNPs were identified as the most likely candidate genes and variations for egg production.These results contribute to the identification of candidate genes and variants for egg traits in poultry.
文摘The main purpose of this study was to detect an association of cytoplasmic signal transducers and activators of transcription-1 (STAT1) with milk production traits in 472 Holstein and 283 Jersey cattle breeds of Turkey. This gene, located on chromosome 2, was chosen due to its role on development of mammary gland. A polymorphism of selected 314 bp allele fragment was detected by the restriction fragment length polymorphism analysis of polymerase chain reaction-amplified fragments (PCR-RFLP) method and also confirmed by DNA sequencing. The association tests were conducted between STAT1 genotypes and some economically important dairy traits. The genotypes for C/T as a single nucleotide polymorphism (SNP) were identified at interval 60 cM to 63 cM. The effects of STAT1 gene on milk production traits were not significant in Holstein cows, although animals with CT genotypes showed fairly close to significant value for the corrected 305 d milk yield. However, Jersey cows with/7" genotype were 2.07 kg higher for test-day milk yield (P 〈 0.05), 0.13 kg for fat yield (P 〈 0.01) and 0.07 kg for protein yield (P 〈 0.05) compared with animals having CC and CT genotypes. Definitely, the further research should be conducted to search this gene intensively with larger samples to identify polymorphism and any association between the economically important traits and genotypic class in Holstein cows. Finally, based on the findings, it was concluded that STATI gene might be used as a potential candidate gene to improve milk yield and milk fat and protein contents in dairy cows breeding programs.
文摘In the blood fluke Schistosoma mansoni a functionally active, monomeric, phospholipid hydroperoxide glutathione peroxidase (PHGPx) has been purified and characterized. This enzyme contains a catalytically active selenocysteine. The protein has been shown to be the product of a cloned gene, previously referred to as a glutathione peroxidase gene. S. mansoni PHGPx has been found 5 times more abundant in female than in male worm extract. As in vertebrate PHGPx, homology alignment indicates that the residues involved in the glutathione binding by the tetrameric cellular glutathione peroxidase are mutated in the S. mansoni enzyme. Thus, this aspect appears a landmark of the PHGPx-type of glutathione peroxidases,which might be of functional relevance
文摘Chinese traditional medicine Danshen is the radix of the perennial herbs of Salvia miltiorrhiza Bunge, which has a variety of pharmacological effects and is traditionally and extensively applied clinically to treat cardiovascular disorders. In this research, the genomic genes for tyrosine aminotransferase (TAT) of 38 cultivated populations of Danshen in China were cloned and bioinformatic analyses were conducted to reveal its genetic diversity and phylogeny. The full-length SmTAT was 2296 - 2444 bp including 6 exons (encoding 411 amino acids) and 5 introns. Overall, the SmTAT genes in cultivated Danshen populations are highly conserved with a relative low level of genetic diversity. The spliced exons (1236 bp) had 23 SNP variations with a rate of 1.86%, of which 22 occurred in the white flower S. miltiorrhiza Bge.f.alba population (W-SCHY-W-1) and led to 5 amino acid variations. The entire 290 SNP variations with a rate of 24% in the 5 introns occurred exclusively in W-SCHY-W-1. Phylogenetic trees based on the full-length, combined introns, the spliced exons, and the deduced amino acid sequences of SmTAT all showed a two-clade basic structure with W-SCHY-W-1 uniquely standing alone. The SmTAT gene of the white flower population (W-SCHY-W-1) is unique and especially rich in variations. The first time clarified genomic SmTAT gene structure and genetic diversity in cultivated Danshen populations laid an excellent foundation for further studies on the biosynthesis of bioactives and the molecular breeding of Danshen as well as in plant tyrosine metabolism.
基金Financially supported by the Danish Council for Independent Research,Technology and Production Sciences (Copenhagen K,Denmark)。
文摘Background Dietary fat is important for energy provision and immune function of lactating sows and their progeny.However,knowledge on the impact of fat on mammary transcription of lipogenic genes,de novo fat synthesis,and milk fatty acid(FA)output is sparse in sows.This study aimed to evaluate impacts of dietary fat levels and FA composition on these traits in sows.Forty second-parity sows(Danish Landrace×Yorkshire)were assigned to 1 of 5 dietary treatments from d 108 of gestation until weaning(d 28 of lactation):low-fat control diet(3%added animal fat);or 1 of 4 high-fat diets with 8%added fat:coconut oil(CO),fish oil(FO),sunflower oil(SO),or 4%octanoic acid plus 4%FO(OFO).Three approaches were taken to estimate de novo milk fat synthesis from glucose and body fat.Results Daily intake of FA was lowest in low-fat sows within fat levels(P<0.01)and in OFO and FO sows within highfat diets(P<0.01).Daily milk outputs of fat,FA,energy,and FA-derived carbon reflected to a large extent the intake of those.On average,estimates for de novo fat synthesis were 82 or 194 g/d from glucose according to method 1 or 2 and 255 g de novo+mobilized FA/d according to method 3.The low-fat diet increased mammary FAS expression(P<0.05)and de novo fat synthesis(method 1;P=0.13)within fat levels.The OFO diet increased de novo fat synthesis(method 1;P<0.05)and numerically upregulated mammary FAS expression compared to the other high-fat diets.Across diets,a daily intake of 440 g digestible FA minimized milk fat originating from glucose and mobilized body fat.Conclusions Sows fed diets with low-fat or octanoic acid,through upregulating FAS expression,increased mammary de novo fat synthesis whereas the milk FA output remained low in sows fed the low-fat diet or high-fat OFO or FO diets,indicating that dietary FA intake,dietary fat level,and body fat mobilization in concert determine de novo fat synthesis,amount and profiles of FA in milk.
基金This study was supported by a grant from National Natural Science Foundation of China (No. 30672024).
文摘Background Proteins or peptides can be directly transferred into cells when covalently linked to protein transduction domains (PTDs). TAT is one of the most widely studied PTDs. The effect of fusion protein TAT and heme oxygenase-1 (HO-1) on liver sinusoidal endothelial cells (SECs) apoptosis during cold storage is unknown. The present study aimed to determine whether fusion protein TAT-HO-1 would transduce efficiently into liver during cold storage, and, if so, to determine whether TAT-HO-1 would attenuate SECs apoptosis during preservation injury in rat. Methods Livers of Sprague-Dawley rats were harvested and randomly assigned to group 1 (HTK solution) and group 2 (HTK solution containing TAT-HO-1 fusion protein) according to the type of the preservation solution. The transduction efficiency of TAT-HO-1 was examined and the impairment of SECs was assessed during the period of cold storage followed by 1 hour of reperfusion. Results TAT-HO-1 can transduce efficiently into liver during cold storage. A significantly lower apoptotic index of SECs was observed in group 2, at 6, 12 and 18 hours of cold storage after 1 hour reperfusion, when compared with group 1. TAT-HO-1 reduced HA and ET levels in liver at each time point. Both Bcl-2 and Bax protein were expressed in hepatocytes and SECs at the periphery of the sinusoidal space. Moreover, higher Bcl-2 expression and lower Bax expression were observed in group 2. Conclusions TAT-HO-1 can transduce efficiently into rat livers and shows a protective effect on SECs by attenuating apoptosis during cold ischemia/reperfusion injury. Protein transduction will be a novel therapeutic strategy to reduce the risk of preservation injury in liver transplantation.
文摘Objective To study the regulatory framework of advanced therapies in the European Union and the United States,and to provide reference for the regulation of cell-and gene-based therapeutic products in China.Methods The legal and regulatory documents,annual reports,work information and related literature published on the websites of the FDA and European Medicines Agency(EMA)were reviewed to analyze the regulatory models of advanced therapies in the European Union and the United States.Results and Conclusion the United States and the European Union have carried out a lot of work in the classification standards of advanced therapies,policy formulation and accelerated listing procedures.Therefore,they have established a relatively mature regulatory system.China can learn from their experience and continuously improve the regulatory system to help the sustainable development of gene and cell therapy industry.