期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
An Efficient Electro-Competent Cells Generation Method of Xanthomonas campestris pv. campestris: Its Application for Plasmid Transformation and Gene Replacement 被引量:1
1
作者 Xiuli Wang Daning Zheng Rubing Liang 《Advances in Microbiology》 2016年第2期79-87,共9页
A simple and rapid method to prepare efficient electro-competent cells of Xanthomonas campestris pv. campestris was generated, with up to 100-fold transformation efficiencies over the existing procedures. The overnigh... A simple and rapid method to prepare efficient electro-competent cells of Xanthomonas campestris pv. campestris was generated, with up to 100-fold transformation efficiencies over the existing procedures. The overnight cultures were treated with sucrose solution and micro-centrifuged at room temperature;the entire electro-competent cells generation process can be completed in 15 minutes. It overcomes the complication and time-consuming shortcomings of the traditional conjugation or electro-transformation methods in this strain. Both the replicative plasmids and non-replicative plasmids could be transformed or integrated efficiently using this method. And the DNA concentration, cells growth stage, field strength and recovery time all had influences on the transformation efficiency. In the optimal conditions, the transformation efficiency for the replicative plasmids was 10<sup>9</sup> transformants per microgram DNA, and for non-replicative plasmids was 150 transformants per microgram DNA. Further with the homology sequences, two chromosomal target genes were deleted efficiently and the knockout strains were obtained easily. 展开更多
关键词 XANTHOMONAS Electro-Competent Cells Electro-Transformation gene replacement INTEGRATION
下载PDF
Precise gene replacement in plants through CRISPR/Cas genome editing technology:current status and future perspectives 被引量:6
2
作者 Shaoya Li Lanqin Xia 《aBIOTECH》 2020年第1期58-73,共16页
CRISPR/Cas,as a simple,versatile,robust and cost-effective system for genome manipulation,has dominated the genome editing field over the past few years.The application of CRISPR/Cas in crop improvement is particularl... CRISPR/Cas,as a simple,versatile,robust and cost-effective system for genome manipulation,has dominated the genome editing field over the past few years.The application of CRISPR/Cas in crop improvement is particularly important in the context of global climate change,as well as diverse agricultural,environmental and ecological challenges.Various CRISPR/Cas toolboxes have been developed and allow for targeted mutagenesis at specific genome loci,transcriptome regulation and epigenome editing,base editing,and precise targeted gene/allele replacement or tagging in plants.In particular,precise replacement of an existing allele with an elite allele in a commercial variety through homology-directed repair(HDR)is a holy grail in genome editing for crop improvement as it has been very difficult,laborious and time-consuming to introgress the elite alleles into commercial varieties without any linkage drag from parental lines within a few generations in crop breeding practice.However,it still remains very challenging in crop plants.This review intends to provide an informative summary of the latest development and breakthroughs in gene replacement using CRISPR/Cas technology,with a focus on achievements,potential mechanisms and future perspectives in plant biological science as well as crop improvement. 展开更多
关键词 CRISPR/Cas gene targeting(GT) gene/allele replacement Genome editing Homology-directed repair(HDR)
原文传递
Efficient allelic replacement in rice by gene editing: A case study of the NRT1.1B gene 被引量:12
3
作者 Jingying Li Xin Zhang +6 位作者 Yongwei Sun Jiahui Zhang Wenming Du Xiuping Guo Shaoya Li Yunde Zhao Lanqin Xia 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2018年第7期536-540,共5页
Summary Precise replacement of an existing allele in commercial cultivars with an elite allele is a major goal in crop breeding. A single nucleotide polymorphism in the NRT1.1B gene between japonica and indica rice is... Summary Precise replacement of an existing allele in commercial cultivars with an elite allele is a major goal in crop breeding. A single nucleotide polymorphism in the NRT1.1B gene between japonica and indica rice is responsible for the improved nitrogen use efficiency in indica rice. Herein, we precisely replaced the japonica NRT1.1B allele with the indica allele, in just one generation, using CRISPR/Cas9 gene-editing technology. No additional selective pressure was needed to enrich the precise replacement events. 展开更多
关键词 HDR B gene Figure A case study of the NRT Efficient allelic replacement in rice by gene editing
原文传递
Efficient scar-free knock-ins of several kilobases in plants by engineered CRISPR-Cas endonucleases
4
作者 Tom Schreiber Anja Prange +7 位作者 Petra Schafer Thomas Iwen Ramona Grutzner Sylvestre Marillonnet Aurelie Lepage Marie Javelle Wyatt Paul Alain Tissier 《Molecular Plant》 SCIE CSCD 2024年第5期824-837,共14页
In plants and mammals,non-homologous end-joining is the dominant pathway to repair DNA doublestrand breaks,making it challenging to generate knock-in events.In this study,we identified two groups of exonucleases from ... In plants and mammals,non-homologous end-joining is the dominant pathway to repair DNA doublestrand breaks,making it challenging to generate knock-in events.In this study,we identified two groups of exonucleases from the herpes virus and the bacteriophage T7 families that conferred an up to 38-fold increase in homology-directed repair frequencies when fused to Cas9/Cas12a in a tobacco mosaic virus-based transient assay in Nicotiana benthamiana.We achieved precise and scar-free insertion of several kilobases of DNA both in transient and stable transformation systems.In Arabidopsis thaliana,fusion of Cas9 to a herpes virus family exonuclease led to 10-fold higher frequencies of knock-ins in the first generation of transformants.In addition,we demonstrated stable and heritable knock-ins in wheat in 1%of the primary transformants.Taken together,our results open perspectives for the routine production of heritable knock-in and gene replacement events in plants. 展开更多
关键词 homology-directed repair knockin gene replacement CRISPR-Cas 50 exonuclease PLANTS
原文传递
Functional Analysis of Autophagy Genes via Agrobacterium-Mediated Transformation in the Vascular Wilt Fungus Verticillium dahliae 被引量:3
5
作者 Lei Zhou Jun Zhao +1 位作者 Wangzhen Guo Tianzhen Zhang 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2013年第8期421-431,共11页
Autophagy is a widely conserved intracellular process for degradation and recycling of proteins, organelles and cytoplasm in eukaryotic organisms and is now emerging as an important process in tbliar infection by many... Autophagy is a widely conserved intracellular process for degradation and recycling of proteins, organelles and cytoplasm in eukaryotic organisms and is now emerging as an important process in tbliar infection by many plant pathogenic fungi. However, the role of autophagy in soil-borne fungal physiology and infection biology is poorly understood. Here, we report the establishment of an Agro- bacterium tumefaciens-mediated transformation (ATMT) system and its application to investigate two autophagy genes, VdATG8 and VdATG12, by means of targeted gene replacement and complementation. Transformation of a cotton-infecting Verticillium dahliae strain Vd8 with a novel binary vector pCOM led to the production of 384 geneticin-resistant translbnnants per 1 × 10^4 conidia. V. dahliae mutants lacking either VdATG8 or VdATGI2 exhibited reduced conidiation and impaired aerial hyphae production. Disease development on Arabidopsis plants was slightly delayed when inoculated with VdATG8 or VdATG12 gene deletion mutants, compared with the wild- type and gene complemented strains. Surprisingly, in vitro inoculation with unimpaired roots revealed that the abilities of root invasion were not affected in gene deletion mutants. These results indicate that autophagy is necessary for aerial hyphae development and plant colonization but not for root infection in E dahliae. 展开更多
关键词 Verticillium dahliae Autophagy: ATMT: Targeted gene replacement PATHOGENICITY
原文传递
CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement 被引量:7
6
作者 Chao LI Eleanor BRANT +1 位作者 Hikmet BUDAK Baohong ZHANG 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2021年第4期253-284,共32页
Since it was first recognized in bacteria and archaea as a mechanism for innate viral immunity in the early 2010 s,clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated protein(Cas)has ra... Since it was first recognized in bacteria and archaea as a mechanism for innate viral immunity in the early 2010 s,clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated protein(Cas)has rapidly been developed into a robust,multifunctional genome editing tool with many uses.Following the discovery of the initial CRISPR/Cas-based system,the technology has been advanced to facilitate a multitude of different functions.These include development as a base editor,prime editor,epigenetic editor,and CRISPR interference(CRISPRi)and CRISPR activator(CRISPRa)gene regulators.It can also be used for chromatin and RNA targeting and imaging.Its applications have proved revolutionary across numerous biological fields,especially in biomedical and agricultural improvement.As a diagnostic tool,CRISPR has been developed to aid the detection and screening of both human and plant diseases,and has even been applied during the current coronavirus disease 2019(COVID-19)pandemic.CRISPR/Cas is also being trialed as a new form of gene therapy for treating various human diseases,including cancers,and has aided drug development.In terms of agricultural breeding,precise targeting of biological pathways via CRISPR/Cas has been key to regulating molecular biosynthesis and allowing modification of proteins,starch,oil,and other functional components for crop improvement.Adding to this,CRISPR/Cas has been shown capable of significantly enhancing both plant tolerance to environmental stresses and overall crop yield via the targeting of various agronomically important gene regulators.Looking to the future,increasing the efficiency and precision of CRISPR/Cas delivery systems and limiting off-target activity are two major challenges for wider application of the technology.This review provides an in-depth overview of current CRISPR development,including the advantages and disadvantages of the technology,recent applications,and future considerations. 展开更多
关键词 Genome editing Clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated protein(Cas) Coronavirus disease 2019(COVID-19) Cancer Precision breeding Crop improvement gene knock-out/in gene repair/replacement
原文传递
TALEN-Mediated Homologous Recombination Produces Site-Directed DNA Base Change and Herbicide-Resistant Rice 被引量:15
7
作者 Ting Li Bo Liu +1 位作者 Chih Ying Chen Bing Yang 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2016年第5期297-305,共9页
Over the last decades,much endeavor has been made to advance genome editing technology due to its promising role in both basic and synthetic biology.The breakthrough has been made in recent years with the advent of se... Over the last decades,much endeavor has been made to advance genome editing technology due to its promising role in both basic and synthetic biology.The breakthrough has been made in recent years with the advent of sequence-specific endonucleases,especially zinc finger nucleases(ZFNs),transcription activator-like effector nucleases(TALENs) and clustered regularly interspaced short palindromic repeats(CRISPRs) guided nucleases(e.g.,Cas9).In higher eukaryotic organisms,site-directed mutagenesis usually can be achieved through non-homologous end-joining(NHEJ) repair to the DNA double-strand breaks(DSBs) caused by the exogenously applied nucleases.However,site-specific gene replacement or genuine genome editing through homologous recombination(HR) repair to DSBs remains a challenge.As a proof of concept gene replacement through TALEN-based HR in rice(Oryza sativa),we successfully produced double point mutations in rice acetolactate synthase gene(OsALS) and generated herbicide resistant rice lines by using TALENs and donor DNA carrying the desired mutations.After ballistic delivery into rice calli of TALEN construct and donor DNA,nine HR events with different genotypes of OsALS were obtained in T_0 generation at the efficiency of 1.4%—6.3%from three experiments.The HRmediated gene edits were heritable to the progeny of T_1 generation.The edited T_1 plants were as morphologically normal as the control plants while displayed strong herbicide resistance.The results demonstrate the feasibility of TALEN-mediated genome editing in rice and provide useful information for further genome editing by other nuclease-based genome editing platforms. 展开更多
关键词 TALEN Genome editing Homologous recombination gene replacement Site-directed mutagenesis Acetolactate synthase Herbicide resistance Rice
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部