AIM: To evaluate the genetic and epigenetic inactivation mechanism of the RASSF1A tumor suppressor gene at 3p21.3 in extrahepatic cholangiocarcinoma. METHODS: RT-PCR was used to investigate the transcriptional express...AIM: To evaluate the genetic and epigenetic inactivation mechanism of the RASSF1A tumor suppressor gene at 3p21.3 in extrahepatic cholangiocarcinoma. METHODS: RT-PCR was used to investigate the transcriptional expressing and re-expression of RASSFIA. RASSFIA mutation was analyzed with SSCP and selective sequencing. PCR was performed to detect the loss of heterozygosity (LOH) at the region of chromosome 3p21.3. Genomic DNA were modificated bisulfite and the frequency of methylation of CpG islands in RASSFIA promoter were evaluated by methylation specific PCR (MS-PCR). RESULTS: In all 48 samples and one cell lines of extrahepatic cholangiocarcinoma, the RASSFIA mutation is rare (6.12%, 3/49), 33 samples (68.75%) and QBC-939 cell lines (X2= 14.270, P= 0.001<0.01) showed RASSFIA express inactivation with LOH at microsatellite loci D3S4604. Among these 33 samples and QBC-939, 28 of 33 (84.85%) tumor samples and 1 cell lines were methylated for majority of 16 CpGs, the average frequency is 73.42%. CONCLUSION: The data we present suggest that RASSFIA which we have been searching for at 3p21.3 may be one of the key tumor suppressor gene and play an important role in the pathogenesis of extrahepatic cholangiocarcinoma, and the promoter methylation and allelic loss are the major mechanism for inactivation of RASSFIA.展开更多
To investigate the relationship between the expression of RASSF1A protein and promoter hypermethylation of RASSF1A gene, RASSF1A protein expression was measured by Western blotting in 10 specimens of normal bladder ti...To investigate the relationship between the expression of RASSF1A protein and promoter hypermethylation of RASSF1A gene, RASSF1A protein expression was measured by Western blotting in 10 specimens of normal bladder tissues and 23 specimens of bladder transitional cell carcinoma (BTCC). The promoter methylation in BTCC and normal bladder tissues was detected by methylation-specific PCR (MSP). The results showed that the expression level of RASSF1A protein was significantly lower in BTCC tissues than that in normal bladder tissues. However, it was not correlated with its clinical stages and pathological grades. The frequency of promoter methylation of RASSF1A gene was higher in BTCC tissues than that in normal bladder tissues. In 14 patients with the aberrant promoter methylation, 13 showed loss or low expression of RASSF 1A protein. It is concluded that RASSF1A gene promoter methylation may contribute to the low level or loss of RASSF1A protein expression, the inactivation of RASSF1A gene and the genesis of BTCC. But, it may bear no correlation with its clinical stages and pathological grades.展开更多
Objective: To explore the relationship between microsatellite alterations of RASSFIA gene and the development of cervical carcinoma, and its relationship with HPV16 infection. Methods: Two sites of microsatellite po...Objective: To explore the relationship between microsatellite alterations of RASSFIA gene and the development of cervical carcinoma, and its relationship with HPV16 infection. Methods: Two sites of microsatellite polymorphism of RASSFIA gene were selected. Polymerase chain reaction (PCR) technique was used to detect LOH and MSI in 50 cases of cervical carcinoma and 40 cases of cervical intraepithelial neoplasia (CIN), and to detect the infection state of HPV16. Results: At D3S1478 and D3S4604, the LOH rates of cervical carcinomas were 32.6% (14/43) and 48.9% (23/47), the MSI rates were 14% (6/43) and 19.1% (9/47), respectively. The LOH rates of CINs were 31.4% (11/35) and 39.5% (15/38), the MSI rates were 11.4% (4/35) and 15.8% (6/38), respectively. There were no significant differences between cervical carcinomas and CINs in respect to their positive rates of LOH and MSI at D3S1478 and D3S4604 (P〉0.05). There were significant differences in LOH rates at D3S1478 and D3S4604 between the stage Ⅰ-Ⅱ and Ⅲ-Ⅳ cervical carcinomas and between the well/moderately differentiated cervical carcinomas and the poorly differentiated cervical carcinomas (P〈0.05). The positive rates of LOH and MSI for CIN Ⅲ and noninvasive cervical carcinomas were higher than those in CIN Ⅰ-Ⅱ. The rates of infection of HPV16 in cervical cancer was obviously higher than that in CIN and in normal cervical tissues (P〈0.05), and the incidence of LOH of RASSFIA gene was higher in HPV16(+) than that in HPV16(-) (P〈0.05). Conclusion: The RASSFIA gene change is a relatively late event in cervical carcinomas. The detection of LOH and MSI of RASSFIA gene might be helpful to the early diagnosis and the screening of cervical carcinoma. It might also be useful for predicting the prognosis of cervical carcinoma.展开更多
Objective To investigate the expression variation of RAR‐β2, RASSF1A, and CDKN2A gene in the process of nickel‐induced carcinogenesis. Methods Nickel subsulfide (Ni 3 S 2 ) at dose of 10 mg was given to Wistar ra...Objective To investigate the expression variation of RAR‐β2, RASSF1A, and CDKN2A gene in the process of nickel‐induced carcinogenesis. Methods Nickel subsulfide (Ni 3 S 2 ) at dose of 10 mg was given to Wistar rats by intramuscular injection. The mRNA expression of the three genes in induced tumors and their lung metastasis were examined by Real‐time PCR. The methylation status of the 5’ region of these genes were detected by Quantitative Real‐time methylation specific PCR. Results The mRNA expressions of the three genes both in muscle and lung tumor were decreased distinctly in comparison with normal tissue. But hypermethylation was found only in muscle tumor. Conclusion These findings suggest that loss of function or decrease of RAR‐β2, RASSF1A, and CDKN2A, as well as the hypermethylation of 5’ region of these genes, are related with nickel exposure.展开更多
BACKGROUND:Adeno-associated virus(AAV)gene therapy has been proven to be reliable and safe for the treatment of osteoarthritis in recent years.However,given the complexity of osteoarthritis pathogenesis,single gene ma...BACKGROUND:Adeno-associated virus(AAV)gene therapy has been proven to be reliable and safe for the treatment of osteoarthritis in recent years.However,given the complexity of osteoarthritis pathogenesis,single gene manipulation for the treatment of osteoarthritis may not produce satisfactory results.Previous studies have shown that nuclear factorκB could promote the inflammatory pathway in osteoarthritic chondrocytes,and bone morphogenetic protein 4(BMP4)could promote cartilage regeneration.OBJECTIVE:To test whether combined application of AAV-p65shRNA and AAV-BMP4 will yield the synergistic effect on chondrocytes regeneration and osteoarthritis treatment.METHODS:Viral particles containing AAV-p65-shRNA and AAV-BMP4 were prepared.Their efficacy in inhibiting inflammation in chondrocytes and promoting chondrogenesis was assessed in vitro and in vivo by transfecting AAV-p65-shRNA or AAV-BMP4 into cells.The experiments were divided into five groups:PBS group;osteoarthritis group;AAV-BMP4 group;AAV-p65shRNA group;and BMP4-p65shRNA 1:1 group.Samples were collected at 4,12,and 24 weeks postoperatively.Tissue staining,including safranin O and Alcian blue,was applied after collecting articular tissue.Then,the optimal ratio between the two types of transfected viral particles was further investigated to improve the chondrogenic potential of mixed cells in vivo.RESULTS AND CONCLUSION:The combined application of AAV-p65shRNA and AAV-BMP4 together showed a synergistic effect on cartilage regeneration and osteoarthritis treatment.Mixed cells transfected with AAV-p65shRNA and AAV-BMP4 at a 1:1 ratio produced the most extracellular matrix synthesis(P<0.05).In vivo results also revealed that the combination of the two viruses had the highest regenerative potential for osteoarthritic cartilage(P<0.05).In the present study,we also discovered that the combined therapy had the maximum effect when the two viruses were administered in equal proportions.Decreasing either p65shRNA or BMP4 transfected cells resulted in less collagen II synthesis.This implies that inhibiting inflammation by p65shRNA and promoting regeneration by BMP4 are equally important for osteoarthritis treatment.These findings provide a new strategy for the treatment of early osteoarthritis by simultaneously inhibiting cartilage inflammation and promoting cartilage repair.展开更多
Retinitis pigmentosa is a group of inherited diseases that lead to retinal degeneration and photoreceptor cell death.However,there is no effective treatment for retinitis pigmentosa caused by PDE6B mutation.Adeno-asso...Retinitis pigmentosa is a group of inherited diseases that lead to retinal degeneration and photoreceptor cell death.However,there is no effective treatment for retinitis pigmentosa caused by PDE6B mutation.Adeno-associated virus(AAV)-mediated gene therapy is a promising strategy for treating retinitis pigmentosa.The aim of this study was to explore the molecular mechanisms by which AAV2-PDE6B rescues retinal function.To do this,we injected retinal degeneration 10(rd10)mice subretinally with AAV2-PDE6B and assessed the therapeutic effects on retinal function and structure using dark-and light-adapted electroretinogram,optical coherence tomography,and immunofluorescence.Data-independent acquisition-mass spectrometry-based proteomic analysis was conducted to investigate protein expression levels and pathway enrichment,and the results from this analysis were verified by real-time polymerase chain reaction and western blotting.AAV2-PDE6B injection significantly upregulated PDE6βexpression,preserved electroretinogram responses,and preserved outer nuclear layer thickness in rd10 mice.Differentially expressed proteins between wild-type and rd10 mice were closely related to visual perception,and treating rd10 mice with AAV2-PDE6B restored differentially expressed protein expression to levels similar to those seen in wild-type mice.Kyoto Encyclopedia of Genes and Genome analysis showed that the differentially expressed proteins whose expression was most significantly altered by AAV2-PDE6B injection were enriched in phototransduction pathways.Furthermore,the phototransductionrelated proteins Pde6α,Rom1,Rho,Aldh1a1,and Rbp1 exhibited opposite expression patterns in rd10 mice with or without AAV2-PDE6B treatment.Finally,Bax/Bcl-2,p-ERK/ERK,and p-c-Fos/c-Fos expression levels decreased in rd10 mice following AAV2-PDE6B treatment.Our data suggest that AAV2-PDE6B-mediated gene therapy promotes phototransduction and inhibits apoptosis by inhibiting the ERK signaling pathway and upregulating Bcl-2/Bax expression in retinitis pigmentosa.展开更多
Tazarotene-induced gene 1(TIG1)is induced by a derivative of vitamin A and is known to regulate many important biological processes and control the development of cancer.TIG1 is widely expressed in various tissues;yet...Tazarotene-induced gene 1(TIG1)is induced by a derivative of vitamin A and is known to regulate many important biological processes and control the development of cancer.TIG1 is widely expressed in various tissues;yet in many cancer tissues,it is not expressed because of the methylation of its promoter.Additionally,the expression of TIG1 in cancer cells inhibits their growth and invasion,suggesting that TIG1 acts as a tumor suppressor gene.However,in some cancers,poor prognosis is associated with TIG1 expression,indicating its protumor growth characteristics,especially in promoting the invasion of inflammatory breast cancer cells.This review comprehensively summarizes the roles of the TIG1 gene in cancer development and details the mechanisms through which TIG1 regulates cancer development,with the aim of understanding its various roles in cancer development.展开更多
Nurr1 defects could in part underlie Parkinson’s disease pathogenesis,and Nurr1 gene polymorphism has been found in Caucasian patients with Parkinson’s disease.In this study,heteroduplex technology was applied to co...Nurr1 defects could in part underlie Parkinson’s disease pathogenesis,and Nurr1 gene polymorphism has been found in Caucasian patients with Parkinson’s disease.In this study,heteroduplex technology was applied to compare the DNA sequences of eight exons of Nurr1 among 200 sporadic Parkinson’s disease patients and 200 healthy controls in the Han population in the Hubei province,China.One allele amplified from exon 3 of Nurr1 was polymorphic in five Parkinson’s disease patients(2.5%,5/200),and two individuals had a polymorphic allele amplified from exon 2 (1%,2/200).The anomalous electrophoresis fragment in exon 3 of Nurr1 gene contained a 709C/A missense mutation,and a polymorphic single nucleotide polymorphism at 388G/A was identified in exon 2.Compared with the control group,the Nurr1 gene expression level in the Parkinson’s disease group was decreased,and the Nurr1 gene expression levels in Parkinson’s disease patients carrying the polymorphisms at exons 2 and 3 were significantly decreased.Our data indicate that the single nucleotide polymorphism 388G/A in exon 2 and the 709C/A missense mutation in exon 3 of the Nurr1 gene in the Chinese population might affect the pathogenesis of Parkinson’s disease.展开更多
Ethylene plays essential roles in plant growth,development and stress responses.The ethylene signaling pathway and molecular mechanism have been studied extensively in Arabidopsis and rice but limited in peanuts.Here,...Ethylene plays essential roles in plant growth,development and stress responses.The ethylene signaling pathway and molecular mechanism have been studied extensively in Arabidopsis and rice but limited in peanuts.Here,we established a sand-culture method to screen pingyangmycin mutagenized peanut lines based on their specific response to ethylene(“triple response”).An ethylene-insensitive mutant,inhibition of peanut hypocotyl elongation 1(iph1),was identified that showed reduced sensitivity to ethylene in both hypocotyl elongation and root growth.Through bulked segregant analysis sequencing,a major gene related to iph1,named AhIPH1,was preliminarily mapped at the chromosome Arahy.01,and further narrowed to a 450-kb genomic region through substitution mapping strategy.A total of 7014 genes were differentially expressed among the ACC treatment through RNA-seq analysis,of which only the Arahy.5BLU0Q gene in the candidate mapping interval was differentially expressed between WT and mutant iph1.Integrating sequence variations,functional annotation and transcriptome analysis revealed that a predicated gene,Arahy.5BLU0Q,encoding SNF1 protein kinase,may be the candidate gene for AhIPH1.This gene contained two single-nucleotide polymorphisms at promoter region and was more highly expressed in iph1 than WT.Our findings reveal a novel ethylene-responsive gene,which provides a theoretical foundation and new genetic resources for the mechanism of ethylene signaling in peanuts.展开更多
Objective:Autosomal recessive bestrophinopathy(ARB),a retinal degenerative disease,is characterized by central visual loss,yellowish multifocal diffuse subretinal deposits,and a dramatic decrease in the light peak on ...Objective:Autosomal recessive bestrophinopathy(ARB),a retinal degenerative disease,is characterized by central visual loss,yellowish multifocal diffuse subretinal deposits,and a dramatic decrease in the light peak on electrooculogram.The potential pathogenic mechanism involves mutations in the BEST1 gene,which encodes Ca2+-activated Cl−channels in the retinal pigment epithelium(RPE),resulting in degeneration of RPE and photoreceptor.In this study,the complete clinical characteristics of two Chinese ARB families were summarized.Methods:Pacific Biosciences(PacBio)single-molecule real-time(SMRT)sequencing was performed on the probands to screen for disease-causing gene mutations,and Sanger sequencing was applied to validate variants in the patients and their family members.Results:Two novel mutations,c.202T>C(chr11:61722628,p.Y68H)and c.867+97G>A,in the BEST1 gene were identified in the two Chinese ARB families.The novel missense mutation BEST1 c.202T>C(p.Y68H)resulted in the substitution of tyrosine with histidine in the N-terminal region of transmembrane domain 2 of bestrophin-1.Another novel variant,BEST1 c.867+97G>A(chr11:61725867),located in intron 7,might be considered a regulatory variant that changes allele-specific binding affinity based on motifs of important transcriptional regulators.Conclusion:Our findings represent the first use of third-generation sequencing(TGS)to identify novel BEST1 mutations in patients with ARB,indicating that TGS can be a more accurate and efficient tool for identifying mutations in specific genes.The novel variants identified further broaden the mutation spectrum of BEST1 in the Chinese population.展开更多
Parkinsonism by unilateral,intranigralβ-sitosterolβ-D-glucoside administration in rats is distinguished in that theα-synuclein insult begins unilaterally but spreads bilaterally and increases in severity over time,...Parkinsonism by unilateral,intranigralβ-sitosterolβ-D-glucoside administration in rats is distinguished in that theα-synuclein insult begins unilaterally but spreads bilaterally and increases in severity over time,thus replicating several clinical features of Parkinson’s disease,a typicalα-synucleinopathy.As Nurr1 repressesα-synuclein,we evaluated whether unilateral transfected of rNurr1-V5 transgene via neurotensin-polyplex to the substantia nigra on day 30 after unilateralβ-sitosterolβ-D-glucoside lesion could affect bilateral neuropathology and sensorimotor deficits on day 30 post-transfection.This study found that rNurr1-V5 expression but not that of the green fluorescent protein(the negative control)reducedβ-sitosterolβ-D-glucoside-induced neuropathology.Accordingly,a bilateral increase in tyrosine hydroxylase-positive cells and arborization occurred in the substantia nigra and increased tyrosine hydroxylase-positive ramifications in the striatum.In addition,tyrosine hydroxylase-positive cells displayed less senescence markerβ-galactosidase and more neuron-cytoskeleton markerβIII-tubulin and brain-derived neurotrophic factor.A significant decrease in activated microglia(positive to ionized calcium-binding adaptor molecule 1)and neurotoxic astrocytes(positive to glial fibrillary acidic protein and complement component 3)and increased neurotrophic astrocytes(positive to glial fibrillary acidic protein and S100 calcium-binding protein A10)also occurred in the substantia nigra.These effects followed the bilateral reduction inα-synuclein aggregates in the nigrostriatal system,improving sensorimotor behavior.Our results show that unilateral rNurr1-V5 transgene expression in nigral dopaminergic neurons mitigates bilateral neurodegeneration(senescence and loss of neuron-cytoskeleton and tyrosine hydroxylase-positive cells),neuroinflammation(activated microglia,neurotoxic astrocytes),α-synuclein aggregation,and sensorimotor deficits.Increased neurotrophic astrocytes and brain-derived neurotrophic factor can mediate the rNurr1-V5 effect,supporting its potential clinical use in the treatment of Parkinson’s disease.展开更多
In this editorial we comment on the article by Wei et al,published in the recent issue of the World Journal of Clinical Oncology.The authors investigated the role of Transmembrane 9 superfamily member 1(TM9SF1)protein...In this editorial we comment on the article by Wei et al,published in the recent issue of the World Journal of Clinical Oncology.The authors investigated the role of Transmembrane 9 superfamily member 1(TM9SF1)protein in bladder cancer(BC)carcinogenesis.Lentiviral vectors were used to achieve silencing or overexpression of TM9SF1 gene in three BC cell lines.These cell lines were then subject to cell counting kit 8,wound-healing assay,transwell assay,and flow cytometry.Proliferation,migration,and invasion of BC cells were increased in cell lines subjected to TM9SF1 overexpression.TM9SF1 silencing inhibited proliferation,migration and invasion of BC cells.The authors conclude that TM9SF1 may be an oncogene in bladder cancer pathogenesis.展开更多
Activity of bc1 complex kinase(ABC1K)is an atypical protein kinase(aPK)that plays a crucial role in plant mitochondrial and plastid stress responses,but little is known about the responses of ABC1Ks to stress in cotto...Activity of bc1 complex kinase(ABC1K)is an atypical protein kinase(aPK)that plays a crucial role in plant mitochondrial and plastid stress responses,but little is known about the responses of ABC1Ks to stress in cotton(Gossypium spp.).Here,we identified 40 ABC1Ks in upland cotton(Gossypium hirsutum L.)and found that the Gh ABC1Ks were unevenly distributed across 17 chromosomes.The GhABC1K family members included 35 paralogous gene pairs and were expanded by segmental duplication.The GhABC1K promoter sequences contained diverse cis-acting regulatory elements relevant to hormone or stress responses.The qRT-PCR results revealed that most Gh ABC1Ks were upregulated by exposure to different stresses.Gh ABC1K2-A05 and Gh ABC1K12-A07 expression levels were upregulated by at least three stress treatments.These genes were further functionally characterized by virus-induced gene silencing(VIGS).Compared with the controls,the Gh ABC1K2-A05-and Gh ABC1K12-A07-silenced cotton lines exhibited higher malondialdehyde(MDA)contents,lower catalase(CAT),peroxidase(POD)and superoxide dismutase(SOD)activities and reduced chlorophyll and soluble sugar contents under NaCl and PEG stress.In addition,the expression levels of six stress marker genes(Gh DREB2A,Gh SOS1,Gh CIPK6,Gh SOS2,Gh WRKY33,and Gh RD29A)were significantly downregulated after stress in the Gh ABC1K2-A05-and Gh ABC1K12-A07-silenced lines.The results indicate that knockdown of Gh ABC1K2-A05 and Gh ABC1K12-A07 make cotton more sensitive to salt and PEG stress.These findings can provide valuable information for intensive studies of Gh ABC1Ks in the responses and resistance of cotton to abiotic stresses.展开更多
In four rice genomes,85 ABC1-family genes were identified by comparative genomics,evolution,genetics,and physiology.One,OsABC1-13,was shown by knockdown and knockout experiments to affect plant height,grain size,and p...In four rice genomes,85 ABC1-family genes were identified by comparative genomics,evolution,genetics,and physiology.One,OsABC1-13,was shown by knockdown and knockout experiments to affect plant height,grain size,and photosynthetic capability.展开更多
Leaf senescence is the final stage of leaf development, where the nutrients and energy of senescent leaves are redistributed to developing tissues or organs for plant growth, reproduction, and defense. Outer leaves ar...Leaf senescence is the final stage of leaf development, where the nutrients and energy of senescent leaves are redistributed to developing tissues or organs for plant growth, reproduction, and defense. Outer leaves are photosynthetic organs that usually senesce at the late heading stage in Chinese cabbage, and premature leaf senescence often reduces leafy head yield and quality. In this study, 11 premature leaf senescence mutants were screened from an ethyl methanesulfonate-mutagenized population of the double haploid line ‘FT' in Chinese cabbage. At the early heading stage, the mutants exhibited edge yellowing within its outer leaves, and at the mature stage, its leafy head weight decreased significantly. Genetic analysis revealed that the mutated trait of all 11 mutants corresponds to single gene recessive inheritance. Semi-diallel cross tests showed that 5 of the 11 were allelic mutants. MutMap and Kompetitive Allele Specific PCR genotyping revealed that BraA01g001400.3C was the candidate gene, which is orthologous of Arabidopsis SUPPRESSOR OF rps4-RLD 1, encoding an immune regulator, so we named it as BrSRFR1. All the BrSRFR1 in the five allelic mutants exhibited single nucleotide polymorphisms at different positions on their exons and led to premature translation termination, which confirmed that defect in BrSRFR1 led to premature leaf senescence. These results verify the role of Br SRFR1 on leaf senescence and provide a new insight into the mechanisms of leaf senescence in Chinese cabbage, which reveals a novel function of SRFR1 in plant development.展开更多
Objective:To investigate whether angiotensinⅡtype 1 receptor(AGTR1 A1166C)gene polymorphism was associated with the effectiveness of valsartan monotherapy in Chinese patients with essential hypertension.Methods:This ...Objective:To investigate whether angiotensinⅡtype 1 receptor(AGTR1 A1166C)gene polymorphism was associated with the effectiveness of valsartan monotherapy in Chinese patients with essential hypertension.Methods:This retrospective analysis included 198 patients(≥18 years of age)who received valsartan monotherapy(80 mg/day)for newly developed essential hypertension at the authors’center between January 1,2020 and December 31,2023.Genotyping for AGTR1 A1166C gene polymorphism was done by polymerase chain reaction(PCR)-melting curve analysis of genomic DNA from peripheral blood samples.A dominant genetic model for AGTR1 A1166C(AA genotype versus AC+CC genotype)was used.Multivariate regression analysis of baseline variables and AGTR1 polymorphism was conducted to identify predictors of target blood pressure attainment(<140/90 mmHg)at the 4-week follow-up.Results:The median age of the 198 patients was(53.7±13.5)years,and 58%were men.Genotyping assays showed that 164 patients had the AA genotype,and 34 patients were of the AC/CC genotype,including 30 with the AC genotype and 4 with the CC genotype.Allele distribution was consistent with Hardy Weinberg equilibrium.109 Patients(55.1%)attained the blood pressure target.Multivariate analysis showed that smoking(versus no smoking,HR 0.314,95%CI 0.159-0.619,P=0.001)and AGTR1 A1166C AA genotype(versus AC/CC,HR 2.927,95%CI 1.296-6.611,P=0.023)were significant and independent predictors of target attainment.25 Patients(73.5%)with AGTR1 A1166C AC/CC genotype attained the target versus 51.2%(51/164)of patients with AGTR1 A1166C AA genotype(P=0.017).Patients with AGTR1 A1166C AC/CC genotype had a significantly greater reduction in systolic blood pressure[(33.1±10.8)mmHg versus(29.2±11.7)mmHg in AA carriers;(P=0.029)].Conclusions:Hypertensive patients carrying one or two C alleles of the AGTR1 A1166C gene were more responsive to valsartan treatment.展开更多
High temperature stress is one of the major environmental factors that affect the growth and development of plants. Although WRKY transcription factors play a critical role in stress responses, there are few studies o...High temperature stress is one of the major environmental factors that affect the growth and development of plants. Although WRKY transcription factors play a critical role in stress responses, there are few studies on the regulation of heat stress by WRKY transcription factors,especially in tomato. Here, we identified a group I WRKY transcription factor, SlWRKY3, involved in thermotolerance in tomato. First, SlWRKY3 was induced and upregulated under heat stress. Accordingly, overexpression of SlWRKY3 led to an increase, whereas knock-out of SlWRKY3 resulted in decreased tolerance to heat stress. Overexpression of SlWRKY3 accumulated less reactive oxygen species(ROS), whereas knock-out of SlWRKY3 accumulated more ROS under heat stress. This indicated that SlWRKY3 positively regulates heat stress in tomato. In addition,SlWRKY3 activated the expression of a range of abiotic stress-responsive genes involved in ROS scavenging, such as a SlGRXS1 gene cluster.Further analysis showed that SlWRKY3 can bind to the promoters of the SlGRXS1 gene cluster and activate their expression. Collectively, these results imply that SlWRKY3 is a positive regulator of thermotolerance through direct binding to the promoters of the SlGRXS1 gene cluster and activating their expression and ROS scavenging.展开更多
Chronic enteropathy associated with the SLCO2A1 gene(CEAS)is a complex gastroenterological condition characterized by multiple ulcers in the small intestine with chronic bleeding and protein loss.This review explores ...Chronic enteropathy associated with the SLCO2A1 gene(CEAS)is a complex gastroenterological condition characterized by multiple ulcers in the small intestine with chronic bleeding and protein loss.This review explores the potential mechanisms underlying the pathogenesis of CEAS,focusing on the role of SLCO2A1-encoded prostaglandin transporter OATP2A1 and its impact on prostaglandin E2(PGE2)levels.Studies have suggested that elevated PGE2 levels contribute to mucosal damage,inflammation,and disruption of the intestinal barrier.The effects of PGE2 on macrophage activation and Maxi-Cl channel functionality,as well as its interaction with nonsteroidal anti-inflammatory drugs play crucial roles in the progression of CEAS.Understanding the balance between its protective and pro-inflammatory effects and the complex interactions within the gastrointestinal tract can shed light on potential therapeutic targets for CEAS and guide the development of novel,targeted therapies.展开更多
Clubroot disease is a severe threat to Brassica crops globally,particularly in western Canada.Genetic resistance,achieved through pyramiding clubroot resistance(CR)genes with different modes of action,is the most impo...Clubroot disease is a severe threat to Brassica crops globally,particularly in western Canada.Genetic resistance,achieved through pyramiding clubroot resistance(CR)genes with different modes of action,is the most important strategy for managing the disease.However,studies on the CR gene functions are quite limited.In this study,we have conducted investigations into the temporal,structural,and interacting features of a newly cloned CR gene,Rcr1,using CRISPR/Cas9 technology.For temporal functionality,we developed a novel CRISPR/Cas9-based binary vector,pHHIGR-Hsp18.2,to deliver Rcr1 into a susceptible canola line(DH12075)and observed that early expression of Rcr1 is critical for conferring resistance.For structural functionality,several independent mutations in specific domains of Rcr1 resulted in loss-offunction,highlighting their importance for CR phenotype.In the study of the interacting features of Rcr1,a cysteine protease gene and its homologous allele in canola were successfully disrupted via CRISPR/Cas9 as an interacting component with Rcr1 protein,resulting in the conversion from clubroot resistant to susceptible in plants carrying intact Rcr1.These results indicated an indispensable role of these two cysteine proteases in Rcr1-mediated resistance response.This study,the first of its kind,provides valuable insights into the functionality of Rcr1.Further,the new vector p HHIGR-Hsp18.2 demonstrated an inducible feature on the removal of add-on traits,which should be useful for functional genomics and other similar research in brassica crops.展开更多
基金Supported by the National High Technology Research and Development Program of China (863 Program), No. 2002AA214061
文摘AIM: To evaluate the genetic and epigenetic inactivation mechanism of the RASSF1A tumor suppressor gene at 3p21.3 in extrahepatic cholangiocarcinoma. METHODS: RT-PCR was used to investigate the transcriptional expressing and re-expression of RASSFIA. RASSFIA mutation was analyzed with SSCP and selective sequencing. PCR was performed to detect the loss of heterozygosity (LOH) at the region of chromosome 3p21.3. Genomic DNA were modificated bisulfite and the frequency of methylation of CpG islands in RASSFIA promoter were evaluated by methylation specific PCR (MS-PCR). RESULTS: In all 48 samples and one cell lines of extrahepatic cholangiocarcinoma, the RASSFIA mutation is rare (6.12%, 3/49), 33 samples (68.75%) and QBC-939 cell lines (X2= 14.270, P= 0.001<0.01) showed RASSFIA express inactivation with LOH at microsatellite loci D3S4604. Among these 33 samples and QBC-939, 28 of 33 (84.85%) tumor samples and 1 cell lines were methylated for majority of 16 CpGs, the average frequency is 73.42%. CONCLUSION: The data we present suggest that RASSFIA which we have been searching for at 3p21.3 may be one of the key tumor suppressor gene and play an important role in the pathogenesis of extrahepatic cholangiocarcinoma, and the promoter methylation and allelic loss are the major mechanism for inactivation of RASSFIA.
基金a grant from the National Natural Sciences Foundation of China (No. 30571858)
文摘To investigate the relationship between the expression of RASSF1A protein and promoter hypermethylation of RASSF1A gene, RASSF1A protein expression was measured by Western blotting in 10 specimens of normal bladder tissues and 23 specimens of bladder transitional cell carcinoma (BTCC). The promoter methylation in BTCC and normal bladder tissues was detected by methylation-specific PCR (MSP). The results showed that the expression level of RASSF1A protein was significantly lower in BTCC tissues than that in normal bladder tissues. However, it was not correlated with its clinical stages and pathological grades. The frequency of promoter methylation of RASSF1A gene was higher in BTCC tissues than that in normal bladder tissues. In 14 patients with the aberrant promoter methylation, 13 showed loss or low expression of RASSF 1A protein. It is concluded that RASSF1A gene promoter methylation may contribute to the low level or loss of RASSF1A protein expression, the inactivation of RASSF1A gene and the genesis of BTCC. But, it may bear no correlation with its clinical stages and pathological grades.
文摘Objective: To explore the relationship between microsatellite alterations of RASSFIA gene and the development of cervical carcinoma, and its relationship with HPV16 infection. Methods: Two sites of microsatellite polymorphism of RASSFIA gene were selected. Polymerase chain reaction (PCR) technique was used to detect LOH and MSI in 50 cases of cervical carcinoma and 40 cases of cervical intraepithelial neoplasia (CIN), and to detect the infection state of HPV16. Results: At D3S1478 and D3S4604, the LOH rates of cervical carcinomas were 32.6% (14/43) and 48.9% (23/47), the MSI rates were 14% (6/43) and 19.1% (9/47), respectively. The LOH rates of CINs were 31.4% (11/35) and 39.5% (15/38), the MSI rates were 11.4% (4/35) and 15.8% (6/38), respectively. There were no significant differences between cervical carcinomas and CINs in respect to their positive rates of LOH and MSI at D3S1478 and D3S4604 (P〉0.05). There were significant differences in LOH rates at D3S1478 and D3S4604 between the stage Ⅰ-Ⅱ and Ⅲ-Ⅳ cervical carcinomas and between the well/moderately differentiated cervical carcinomas and the poorly differentiated cervical carcinomas (P〈0.05). The positive rates of LOH and MSI for CIN Ⅲ and noninvasive cervical carcinomas were higher than those in CIN Ⅰ-Ⅱ. The rates of infection of HPV16 in cervical cancer was obviously higher than that in CIN and in normal cervical tissues (P〈0.05), and the incidence of LOH of RASSFIA gene was higher in HPV16(+) than that in HPV16(-) (P〈0.05). Conclusion: The RASSFIA gene change is a relatively late event in cervical carcinomas. The detection of LOH and MSI of RASSFIA gene might be helpful to the early diagnosis and the screening of cervical carcinoma. It might also be useful for predicting the prognosis of cervical carcinoma.
基金supported by the Natural Science Foundation of China (30570690 and 81041069)the Natural Science Foundation of Shanghai (08ZR1420700)
文摘Objective To investigate the expression variation of RAR‐β2, RASSF1A, and CDKN2A gene in the process of nickel‐induced carcinogenesis. Methods Nickel subsulfide (Ni 3 S 2 ) at dose of 10 mg was given to Wistar rats by intramuscular injection. The mRNA expression of the three genes in induced tumors and their lung metastasis were examined by Real‐time PCR. The methylation status of the 5’ region of these genes were detected by Quantitative Real‐time methylation specific PCR. Results The mRNA expressions of the three genes both in muscle and lung tumor were decreased distinctly in comparison with normal tissue. But hypermethylation was found only in muscle tumor. Conclusion These findings suggest that loss of function or decrease of RAR‐β2, RASSF1A, and CDKN2A, as well as the hypermethylation of 5’ region of these genes, are related with nickel exposure.
文摘BACKGROUND:Adeno-associated virus(AAV)gene therapy has been proven to be reliable and safe for the treatment of osteoarthritis in recent years.However,given the complexity of osteoarthritis pathogenesis,single gene manipulation for the treatment of osteoarthritis may not produce satisfactory results.Previous studies have shown that nuclear factorκB could promote the inflammatory pathway in osteoarthritic chondrocytes,and bone morphogenetic protein 4(BMP4)could promote cartilage regeneration.OBJECTIVE:To test whether combined application of AAV-p65shRNA and AAV-BMP4 will yield the synergistic effect on chondrocytes regeneration and osteoarthritis treatment.METHODS:Viral particles containing AAV-p65-shRNA and AAV-BMP4 were prepared.Their efficacy in inhibiting inflammation in chondrocytes and promoting chondrogenesis was assessed in vitro and in vivo by transfecting AAV-p65-shRNA or AAV-BMP4 into cells.The experiments were divided into five groups:PBS group;osteoarthritis group;AAV-BMP4 group;AAV-p65shRNA group;and BMP4-p65shRNA 1:1 group.Samples were collected at 4,12,and 24 weeks postoperatively.Tissue staining,including safranin O and Alcian blue,was applied after collecting articular tissue.Then,the optimal ratio between the two types of transfected viral particles was further investigated to improve the chondrogenic potential of mixed cells in vivo.RESULTS AND CONCLUSION:The combined application of AAV-p65shRNA and AAV-BMP4 together showed a synergistic effect on cartilage regeneration and osteoarthritis treatment.Mixed cells transfected with AAV-p65shRNA and AAV-BMP4 at a 1:1 ratio produced the most extracellular matrix synthesis(P<0.05).In vivo results also revealed that the combination of the two viruses had the highest regenerative potential for osteoarthritic cartilage(P<0.05).In the present study,we also discovered that the combined therapy had the maximum effect when the two viruses were administered in equal proportions.Decreasing either p65shRNA or BMP4 transfected cells resulted in less collagen II synthesis.This implies that inhibiting inflammation by p65shRNA and promoting regeneration by BMP4 are equally important for osteoarthritis treatment.These findings provide a new strategy for the treatment of early osteoarthritis by simultaneously inhibiting cartilage inflammation and promoting cartilage repair.
基金supported by the National Natural Science Foundation of China,Nos.82071008(to BL)and 82004001(to XJ)Medical Science and Technology Program of Health Commission of Henan Province,No.LHGJ20210072(to RQ)Science and Technology Department of Henan Province,No.212102310307(to XJ)。
文摘Retinitis pigmentosa is a group of inherited diseases that lead to retinal degeneration and photoreceptor cell death.However,there is no effective treatment for retinitis pigmentosa caused by PDE6B mutation.Adeno-associated virus(AAV)-mediated gene therapy is a promising strategy for treating retinitis pigmentosa.The aim of this study was to explore the molecular mechanisms by which AAV2-PDE6B rescues retinal function.To do this,we injected retinal degeneration 10(rd10)mice subretinally with AAV2-PDE6B and assessed the therapeutic effects on retinal function and structure using dark-and light-adapted electroretinogram,optical coherence tomography,and immunofluorescence.Data-independent acquisition-mass spectrometry-based proteomic analysis was conducted to investigate protein expression levels and pathway enrichment,and the results from this analysis were verified by real-time polymerase chain reaction and western blotting.AAV2-PDE6B injection significantly upregulated PDE6βexpression,preserved electroretinogram responses,and preserved outer nuclear layer thickness in rd10 mice.Differentially expressed proteins between wild-type and rd10 mice were closely related to visual perception,and treating rd10 mice with AAV2-PDE6B restored differentially expressed protein expression to levels similar to those seen in wild-type mice.Kyoto Encyclopedia of Genes and Genome analysis showed that the differentially expressed proteins whose expression was most significantly altered by AAV2-PDE6B injection were enriched in phototransduction pathways.Furthermore,the phototransductionrelated proteins Pde6α,Rom1,Rho,Aldh1a1,and Rbp1 exhibited opposite expression patterns in rd10 mice with or without AAV2-PDE6B treatment.Finally,Bax/Bcl-2,p-ERK/ERK,and p-c-Fos/c-Fos expression levels decreased in rd10 mice following AAV2-PDE6B treatment.Our data suggest that AAV2-PDE6B-mediated gene therapy promotes phototransduction and inhibits apoptosis by inhibiting the ERK signaling pathway and upregulating Bcl-2/Bax expression in retinitis pigmentosa.
基金supported by the Taipei Tzu Chi Hospital through grants from the Buddhist Tzu Chi Medical Foundation under the Numbers TCRD-TPE-111-23(2/3)and TCRD-TPE-113-20,Taipei,Taiwan.
文摘Tazarotene-induced gene 1(TIG1)is induced by a derivative of vitamin A and is known to regulate many important biological processes and control the development of cancer.TIG1 is widely expressed in various tissues;yet in many cancer tissues,it is not expressed because of the methylation of its promoter.Additionally,the expression of TIG1 in cancer cells inhibits their growth and invasion,suggesting that TIG1 acts as a tumor suppressor gene.However,in some cancers,poor prognosis is associated with TIG1 expression,indicating its protumor growth characteristics,especially in promoting the invasion of inflammatory breast cancer cells.This review comprehensively summarizes the roles of the TIG1 gene in cancer development and details the mechanisms through which TIG1 regulates cancer development,with the aim of understanding its various roles in cancer development.
基金supported by the Science and Technology Department of Jiangxi Province,No.20114BAB205076a Grant from the Jiangxi Provincial Health Department,No.20094008
文摘Nurr1 defects could in part underlie Parkinson’s disease pathogenesis,and Nurr1 gene polymorphism has been found in Caucasian patients with Parkinson’s disease.In this study,heteroduplex technology was applied to compare the DNA sequences of eight exons of Nurr1 among 200 sporadic Parkinson’s disease patients and 200 healthy controls in the Han population in the Hubei province,China.One allele amplified from exon 3 of Nurr1 was polymorphic in five Parkinson’s disease patients(2.5%,5/200),and two individuals had a polymorphic allele amplified from exon 2 (1%,2/200).The anomalous electrophoresis fragment in exon 3 of Nurr1 gene contained a 709C/A missense mutation,and a polymorphic single nucleotide polymorphism at 388G/A was identified in exon 2.Compared with the control group,the Nurr1 gene expression level in the Parkinson’s disease group was decreased,and the Nurr1 gene expression levels in Parkinson’s disease patients carrying the polymorphisms at exons 2 and 3 were significantly decreased.Our data indicate that the single nucleotide polymorphism 388G/A in exon 2 and the 709C/A missense mutation in exon 3 of the Nurr1 gene in the Chinese population might affect the pathogenesis of Parkinson’s disease.
基金supported by the National Natural Science Foundation of China(32001578)Qingdao Science&Technology Key Projects(22-1-3-1-zyyd-nsh,23-1-3-8-zyyd-nsh)+1 种基金Salt-Alkali Agriculture Industry System of Shandong Province(SDAIT-29-03)Science&Technology Specific Projects in Agricultural High-tech Industrial Demonstration Area of the Yellow River Delta(2022SZX19)。
文摘Ethylene plays essential roles in plant growth,development and stress responses.The ethylene signaling pathway and molecular mechanism have been studied extensively in Arabidopsis and rice but limited in peanuts.Here,we established a sand-culture method to screen pingyangmycin mutagenized peanut lines based on their specific response to ethylene(“triple response”).An ethylene-insensitive mutant,inhibition of peanut hypocotyl elongation 1(iph1),was identified that showed reduced sensitivity to ethylene in both hypocotyl elongation and root growth.Through bulked segregant analysis sequencing,a major gene related to iph1,named AhIPH1,was preliminarily mapped at the chromosome Arahy.01,and further narrowed to a 450-kb genomic region through substitution mapping strategy.A total of 7014 genes were differentially expressed among the ACC treatment through RNA-seq analysis,of which only the Arahy.5BLU0Q gene in the candidate mapping interval was differentially expressed between WT and mutant iph1.Integrating sequence variations,functional annotation and transcriptome analysis revealed that a predicated gene,Arahy.5BLU0Q,encoding SNF1 protein kinase,may be the candidate gene for AhIPH1.This gene contained two single-nucleotide polymorphisms at promoter region and was more highly expressed in iph1 than WT.Our findings reveal a novel ethylene-responsive gene,which provides a theoretical foundation and new genetic resources for the mechanism of ethylene signaling in peanuts.
文摘Objective:Autosomal recessive bestrophinopathy(ARB),a retinal degenerative disease,is characterized by central visual loss,yellowish multifocal diffuse subretinal deposits,and a dramatic decrease in the light peak on electrooculogram.The potential pathogenic mechanism involves mutations in the BEST1 gene,which encodes Ca2+-activated Cl−channels in the retinal pigment epithelium(RPE),resulting in degeneration of RPE and photoreceptor.In this study,the complete clinical characteristics of two Chinese ARB families were summarized.Methods:Pacific Biosciences(PacBio)single-molecule real-time(SMRT)sequencing was performed on the probands to screen for disease-causing gene mutations,and Sanger sequencing was applied to validate variants in the patients and their family members.Results:Two novel mutations,c.202T>C(chr11:61722628,p.Y68H)and c.867+97G>A,in the BEST1 gene were identified in the two Chinese ARB families.The novel missense mutation BEST1 c.202T>C(p.Y68H)resulted in the substitution of tyrosine with histidine in the N-terminal region of transmembrane domain 2 of bestrophin-1.Another novel variant,BEST1 c.867+97G>A(chr11:61725867),located in intron 7,might be considered a regulatory variant that changes allele-specific binding affinity based on motifs of important transcriptional regulators.Conclusion:Our findings represent the first use of third-generation sequencing(TGS)to identify novel BEST1 mutations in patients with ARB,indicating that TGS can be a more accurate and efficient tool for identifying mutations in specific genes.The novel variants identified further broaden the mutation spectrum of BEST1 in the Chinese population.
文摘Parkinsonism by unilateral,intranigralβ-sitosterolβ-D-glucoside administration in rats is distinguished in that theα-synuclein insult begins unilaterally but spreads bilaterally and increases in severity over time,thus replicating several clinical features of Parkinson’s disease,a typicalα-synucleinopathy.As Nurr1 repressesα-synuclein,we evaluated whether unilateral transfected of rNurr1-V5 transgene via neurotensin-polyplex to the substantia nigra on day 30 after unilateralβ-sitosterolβ-D-glucoside lesion could affect bilateral neuropathology and sensorimotor deficits on day 30 post-transfection.This study found that rNurr1-V5 expression but not that of the green fluorescent protein(the negative control)reducedβ-sitosterolβ-D-glucoside-induced neuropathology.Accordingly,a bilateral increase in tyrosine hydroxylase-positive cells and arborization occurred in the substantia nigra and increased tyrosine hydroxylase-positive ramifications in the striatum.In addition,tyrosine hydroxylase-positive cells displayed less senescence markerβ-galactosidase and more neuron-cytoskeleton markerβIII-tubulin and brain-derived neurotrophic factor.A significant decrease in activated microglia(positive to ionized calcium-binding adaptor molecule 1)and neurotoxic astrocytes(positive to glial fibrillary acidic protein and complement component 3)and increased neurotrophic astrocytes(positive to glial fibrillary acidic protein and S100 calcium-binding protein A10)also occurred in the substantia nigra.These effects followed the bilateral reduction inα-synuclein aggregates in the nigrostriatal system,improving sensorimotor behavior.Our results show that unilateral rNurr1-V5 transgene expression in nigral dopaminergic neurons mitigates bilateral neurodegeneration(senescence and loss of neuron-cytoskeleton and tyrosine hydroxylase-positive cells),neuroinflammation(activated microglia,neurotoxic astrocytes),α-synuclein aggregation,and sensorimotor deficits.Increased neurotrophic astrocytes and brain-derived neurotrophic factor can mediate the rNurr1-V5 effect,supporting its potential clinical use in the treatment of Parkinson’s disease.
文摘In this editorial we comment on the article by Wei et al,published in the recent issue of the World Journal of Clinical Oncology.The authors investigated the role of Transmembrane 9 superfamily member 1(TM9SF1)protein in bladder cancer(BC)carcinogenesis.Lentiviral vectors were used to achieve silencing or overexpression of TM9SF1 gene in three BC cell lines.These cell lines were then subject to cell counting kit 8,wound-healing assay,transwell assay,and flow cytometry.Proliferation,migration,and invasion of BC cells were increased in cell lines subjected to TM9SF1 overexpression.TM9SF1 silencing inhibited proliferation,migration and invasion of BC cells.The authors conclude that TM9SF1 may be an oncogene in bladder cancer pathogenesis.
基金supported by the State Key Laboratory of Aridland Crop Science,Gansu Agricultural University,China(GSCS-2019-10)the National Natural Science Foundation of China(31801414 and 32260478)+2 种基金the Gansu Province Science and Technology Program,China(20JR10RA531)the Natural Science Foundation of Xinjiang Uygur Autonomous Region,China(2022D01E103)the Education Technology Innovation Project of Gansu Province,China(2022QB-076)。
文摘Activity of bc1 complex kinase(ABC1K)is an atypical protein kinase(aPK)that plays a crucial role in plant mitochondrial and plastid stress responses,but little is known about the responses of ABC1Ks to stress in cotton(Gossypium spp.).Here,we identified 40 ABC1Ks in upland cotton(Gossypium hirsutum L.)and found that the Gh ABC1Ks were unevenly distributed across 17 chromosomes.The GhABC1K family members included 35 paralogous gene pairs and were expanded by segmental duplication.The GhABC1K promoter sequences contained diverse cis-acting regulatory elements relevant to hormone or stress responses.The qRT-PCR results revealed that most Gh ABC1Ks were upregulated by exposure to different stresses.Gh ABC1K2-A05 and Gh ABC1K12-A07 expression levels were upregulated by at least three stress treatments.These genes were further functionally characterized by virus-induced gene silencing(VIGS).Compared with the controls,the Gh ABC1K2-A05-and Gh ABC1K12-A07-silenced cotton lines exhibited higher malondialdehyde(MDA)contents,lower catalase(CAT),peroxidase(POD)and superoxide dismutase(SOD)activities and reduced chlorophyll and soluble sugar contents under NaCl and PEG stress.In addition,the expression levels of six stress marker genes(Gh DREB2A,Gh SOS1,Gh CIPK6,Gh SOS2,Gh WRKY33,and Gh RD29A)were significantly downregulated after stress in the Gh ABC1K2-A05-and Gh ABC1K12-A07-silenced lines.The results indicate that knockdown of Gh ABC1K2-A05 and Gh ABC1K12-A07 make cotton more sensitive to salt and PEG stress.These findings can provide valuable information for intensive studies of Gh ABC1Ks in the responses and resistance of cotton to abiotic stresses.
基金supported by the Innovation Program of the Shanghai Municipal Education Commission(2023ZKZD05)the Shanghai Oriental Talent(Rural Revitalization)Top Talent Project(T2023102).
文摘In four rice genomes,85 ABC1-family genes were identified by comparative genomics,evolution,genetics,and physiology.One,OsABC1-13,was shown by knockdown and knockout experiments to affect plant height,grain size,and photosynthetic capability.
基金supported by the National Natural Science Foundation of China (Grant No.31972405)Graduate Student Innovation Cultivation Project of Shenyang Agricultural University (Grant No.2021YCXB16)。
文摘Leaf senescence is the final stage of leaf development, where the nutrients and energy of senescent leaves are redistributed to developing tissues or organs for plant growth, reproduction, and defense. Outer leaves are photosynthetic organs that usually senesce at the late heading stage in Chinese cabbage, and premature leaf senescence often reduces leafy head yield and quality. In this study, 11 premature leaf senescence mutants were screened from an ethyl methanesulfonate-mutagenized population of the double haploid line ‘FT' in Chinese cabbage. At the early heading stage, the mutants exhibited edge yellowing within its outer leaves, and at the mature stage, its leafy head weight decreased significantly. Genetic analysis revealed that the mutated trait of all 11 mutants corresponds to single gene recessive inheritance. Semi-diallel cross tests showed that 5 of the 11 were allelic mutants. MutMap and Kompetitive Allele Specific PCR genotyping revealed that BraA01g001400.3C was the candidate gene, which is orthologous of Arabidopsis SUPPRESSOR OF rps4-RLD 1, encoding an immune regulator, so we named it as BrSRFR1. All the BrSRFR1 in the five allelic mutants exhibited single nucleotide polymorphisms at different positions on their exons and led to premature translation termination, which confirmed that defect in BrSRFR1 led to premature leaf senescence. These results verify the role of Br SRFR1 on leaf senescence and provide a new insight into the mechanisms of leaf senescence in Chinese cabbage, which reveals a novel function of SRFR1 in plant development.
基金Science and Technology Key Project of Xuzhou Municipal Health Commission,Jiangsu Province,China(XWKYHT20210531)Pengcheng Yingcai-Medical Young Reserve Talent Programme(XWRCHT20220013).
文摘Objective:To investigate whether angiotensinⅡtype 1 receptor(AGTR1 A1166C)gene polymorphism was associated with the effectiveness of valsartan monotherapy in Chinese patients with essential hypertension.Methods:This retrospective analysis included 198 patients(≥18 years of age)who received valsartan monotherapy(80 mg/day)for newly developed essential hypertension at the authors’center between January 1,2020 and December 31,2023.Genotyping for AGTR1 A1166C gene polymorphism was done by polymerase chain reaction(PCR)-melting curve analysis of genomic DNA from peripheral blood samples.A dominant genetic model for AGTR1 A1166C(AA genotype versus AC+CC genotype)was used.Multivariate regression analysis of baseline variables and AGTR1 polymorphism was conducted to identify predictors of target blood pressure attainment(<140/90 mmHg)at the 4-week follow-up.Results:The median age of the 198 patients was(53.7±13.5)years,and 58%were men.Genotyping assays showed that 164 patients had the AA genotype,and 34 patients were of the AC/CC genotype,including 30 with the AC genotype and 4 with the CC genotype.Allele distribution was consistent with Hardy Weinberg equilibrium.109 Patients(55.1%)attained the blood pressure target.Multivariate analysis showed that smoking(versus no smoking,HR 0.314,95%CI 0.159-0.619,P=0.001)and AGTR1 A1166C AA genotype(versus AC/CC,HR 2.927,95%CI 1.296-6.611,P=0.023)were significant and independent predictors of target attainment.25 Patients(73.5%)with AGTR1 A1166C AC/CC genotype attained the target versus 51.2%(51/164)of patients with AGTR1 A1166C AA genotype(P=0.017).Patients with AGTR1 A1166C AC/CC genotype had a significantly greater reduction in systolic blood pressure[(33.1±10.8)mmHg versus(29.2±11.7)mmHg in AA carriers;(P=0.029)].Conclusions:Hypertensive patients carrying one or two C alleles of the AGTR1 A1166C gene were more responsive to valsartan treatment.
基金supported by grants from the National Key Research&Development Plan,China (Grant Nos.2021YFD1200201,2022YFD1200502)National Natural Science Foundation of China(31972426,31991182)+3 种基金Key Project of Hubei Hongshan Laboratory(Grant No.2021hszd007)Wuhan Major Project of Key Technologies in Biological Breeding (Grant No.2022021302024852)Fundamental Research Funds for the Central Universities,China (Grant No.2662022YLPY001)International Cooperation Promotion Plan of Shihezi University (Grant No.GJHZ202104)。
文摘High temperature stress is one of the major environmental factors that affect the growth and development of plants. Although WRKY transcription factors play a critical role in stress responses, there are few studies on the regulation of heat stress by WRKY transcription factors,especially in tomato. Here, we identified a group I WRKY transcription factor, SlWRKY3, involved in thermotolerance in tomato. First, SlWRKY3 was induced and upregulated under heat stress. Accordingly, overexpression of SlWRKY3 led to an increase, whereas knock-out of SlWRKY3 resulted in decreased tolerance to heat stress. Overexpression of SlWRKY3 accumulated less reactive oxygen species(ROS), whereas knock-out of SlWRKY3 accumulated more ROS under heat stress. This indicated that SlWRKY3 positively regulates heat stress in tomato. In addition,SlWRKY3 activated the expression of a range of abiotic stress-responsive genes involved in ROS scavenging, such as a SlGRXS1 gene cluster.Further analysis showed that SlWRKY3 can bind to the promoters of the SlGRXS1 gene cluster and activate their expression. Collectively, these results imply that SlWRKY3 is a positive regulator of thermotolerance through direct binding to the promoters of the SlGRXS1 gene cluster and activating their expression and ROS scavenging.
基金Supported by the National High-Level Hospital Clinical Research Fund,No.2022-PUMCH-A-020the Undergraduate Teaching Reform and Innovation Project,No.2022zlgc0108.
文摘Chronic enteropathy associated with the SLCO2A1 gene(CEAS)is a complex gastroenterological condition characterized by multiple ulcers in the small intestine with chronic bleeding and protein loss.This review explores the potential mechanisms underlying the pathogenesis of CEAS,focusing on the role of SLCO2A1-encoded prostaglandin transporter OATP2A1 and its impact on prostaglandin E2(PGE2)levels.Studies have suggested that elevated PGE2 levels contribute to mucosal damage,inflammation,and disruption of the intestinal barrier.The effects of PGE2 on macrophage activation and Maxi-Cl channel functionality,as well as its interaction with nonsteroidal anti-inflammatory drugs play crucial roles in the progression of CEAS.Understanding the balance between its protective and pro-inflammatory effects and the complex interactions within the gastrointestinal tract can shed light on potential therapeutic targets for CEAS and guide the development of novel,targeted therapies.
基金supported by the Genomics Initiative of Agriculture and Agri-Food Canada。
文摘Clubroot disease is a severe threat to Brassica crops globally,particularly in western Canada.Genetic resistance,achieved through pyramiding clubroot resistance(CR)genes with different modes of action,is the most important strategy for managing the disease.However,studies on the CR gene functions are quite limited.In this study,we have conducted investigations into the temporal,structural,and interacting features of a newly cloned CR gene,Rcr1,using CRISPR/Cas9 technology.For temporal functionality,we developed a novel CRISPR/Cas9-based binary vector,pHHIGR-Hsp18.2,to deliver Rcr1 into a susceptible canola line(DH12075)and observed that early expression of Rcr1 is critical for conferring resistance.For structural functionality,several independent mutations in specific domains of Rcr1 resulted in loss-offunction,highlighting their importance for CR phenotype.In the study of the interacting features of Rcr1,a cysteine protease gene and its homologous allele in canola were successfully disrupted via CRISPR/Cas9 as an interacting component with Rcr1 protein,resulting in the conversion from clubroot resistant to susceptible in plants carrying intact Rcr1.These results indicated an indispensable role of these two cysteine proteases in Rcr1-mediated resistance response.This study,the first of its kind,provides valuable insights into the functionality of Rcr1.Further,the new vector p HHIGR-Hsp18.2 demonstrated an inducible feature on the removal of add-on traits,which should be useful for functional genomics and other similar research in brassica crops.