The key and bottleneck of research on the tip-jet rotor compound helicopter lies in the power system. Computational Fluid Dynamics (CFD) was used to numerically simulate the gas generator and rotor inner passage of th...The key and bottleneck of research on the tip-jet rotor compound helicopter lies in the power system. Computational Fluid Dynamics (CFD) was used to numerically simulate the gas generator and rotor inner passage of the tip-jet rotor composite power system, studying the effects of intake mode, inner cavity structure, propellant components, and injection amount on the characteristics of the composite power system. The results show that when a single high-temperature exhaust gas enters, the gas generator outlet fluid is uneven and asymmetric;when two-way high-temperature exhaust gas enters, the outlet temperature of the gas generator with a tilted inlet is more uniform than that with a vertical inlet;adding an inner cavity improves the temperature and velocity distribution of the gas generator's internal flow field;increasing the energy of the propellant is beneficial for improving the available moment.展开更多
Rotor vibration characteristics are first analyzed, which are that the rotor vibration of fundamental frequency will increase due to rotor winding inter-turn short circuit fault, air-gap dynamic eccentricity fault, or...Rotor vibration characteristics are first analyzed, which are that the rotor vibration of fundamental frequency will increase due to rotor winding inter-turn short circuit fault, air-gap dynamic eccentricity fault, or imbalance fault, and the vibration of the second frequency will increase when the air-gap static eccentricity fault occurs. Next, the characteristics of the stator winding parallel branches circulating current are analyzed, which are that the second harmonics circulating current will increase when the rotor winding inter-turn short circuit fault occurs, and the fundamental circulating current will increase when the air-gap eccentricity fault occurs, neither being strongly affected by the imbalance fault. Considering the differences of the rotor vibration and circulating current characteristics caused by different rotor faults, a method of generator vibration fault diagnosis, based on rotor vibration and circulating current characteristics, is developed. Finally, the rotor vibration and circulating current of a type SDF-9 generator is measured in the laboratory to verify the theoretical analysis presented above.展开更多
In order to enhance the transient performance of aircraft high voltage DC(HVDC)generation system with wound rotor synchronous machine(WRSM)under a wide speed range,the nonlinear PI multi-loop control strategy is propo...In order to enhance the transient performance of aircraft high voltage DC(HVDC)generation system with wound rotor synchronous machine(WRSM)under a wide speed range,the nonlinear PI multi-loop control strategy is proposed in this paper.Traditional voltage control method is hard to achieve the dynamic performance requirements of the HVDC generation system under a wide speed range,so the nonlinear PI parameter adjustment,load current feedback and speed feedback are added to the voltage and excitation current double loop control.The transfer function of the HVDC generation system is derived,and the relationship between speed,load current and PI parameters is obtained.The PI parameters corresponding to the load at certain speed are used to shorten the adjusting time when the load suddenly changes.The dynamic responses in transient processes are analyzed by experiment.The results illustrate that the WRSM HVDC generator system with this method has better dynamic performance.展开更多
A nonlinear model of a low pressure cylinder-generator rotor system is presented to study sub-synchronous resonance and combined resonance. Analytical results are obtained by an averaging method. Transition sets and b...A nonlinear model of a low pressure cylinder-generator rotor system is presented to study sub-synchronous resonance and combined resonance. Analytical results are obtained by an averaging method. Transition sets and bifurcation diagrams are obtained based on the singularity theory for the two-state variable system. The bifurcation characteristics are analyzed to provide a basis for the optimal design and fault diagnosis of the rotor system. Finally, the theoretical results are verified with the numerical results.展开更多
A novel transient rotor current control scheme is proposed in this paper for a doubly-fed induction generator(DFIG)equipped with a superconducting magnetic energy storage(SMES) device to enhance its transient volt...A novel transient rotor current control scheme is proposed in this paper for a doubly-fed induction generator(DFIG)equipped with a superconducting magnetic energy storage(SMES) device to enhance its transient voltage and frequency support capacity during grid faults. The SMES connected to the DC-link capacitor of the DFIG is controlled to regulate the transient dc-link voltage so that the whole capacity of the grid side converter(GSC) is dedicated to injecting reactive power to the grid for the transient voltage support. However, the rotor-side converter(RSC) has different control tasks for different periods of the grid fault. Firstly, for Period I, the RSC injects the demagnetizing current to ensure the controllability of the rotor voltage. Then, since the dc stator flux degenerates rapidly in Period II, the required demagnetizing current is low in Period II and the RSC uses the spare capacity to additionally generate the reactive(priority) and active current so that the transient voltage capability is corroborated and the DFIG also positively responds to the system frequency dynamic at the earliest time. Finally, a small amount of demagnetizing current is provided after the fault clearance. Most of the RSC capacity is used to inject the active current to further support the frequency recovery of the system. Simulations are carried out on a simple power system with a wind farm. Comparisons with other commonly used control methods are performed to validate the proposed control method.展开更多
Earlier measurements in large synchronous generators indicate the existence of complex whirling motion, and also deviations of shape in both the rotor and the stator. These non-symmetric geometries produce an attracti...Earlier measurements in large synchronous generators indicate the existence of complex whirling motion, and also deviations of shape in both the rotor and the stator. These non-symmetric geometries produce an attraction force between the rotor and the stator,called unbalanced magnetic pull(UMP).The target of this paper is to analyse responses due to certain deviations of shape in the rotor and the stator.In particular,the perturbation on the rotor is considered to be of oval character,and the perturbations of the stator are considered triangular.By numerical and analytical methods it is concluded for which generator parameters harmful conditions,such as complicated whirling motion and high amplitudes,will occur.During maintenance of hydro power generators the shapes of the rotor and stator are frequently measured.The results from this paper can be used to evaluate such measurements and to explain the existence of complex whirling motion.展开更多
The rotor initial unbalance of an aeroengine gas generator of turboshaft engine seriously affects rotor assembly process.To reasonably optimize rotor assembly process,the effect analyses of rotor initial unbalance of ...The rotor initial unbalance of an aeroengine gas generator of turboshaft engine seriously affects rotor assembly process.To reasonably optimize rotor assembly process,the effect analyses of rotor initial unbalance of single disc and combined discs on rotor dynamic characteristics are firstly implemented in respect of the dispersity of rotor initial unbalance.It is found that the most important factors contributing to rotor vibration are the unbalances of the first stage compressor disc and the second stage turbine disc.However,reducing the mass of two discs conflicts with the control of the whole gas generator rotor balance resulting from the unbalance increase of single components.Thus,we further analyze the key control factors of affecting rotor initial unbalance,and give the strict control measures of centrifugal impeller runout in the assembly process by adjusting the angle of central tie rod axis.The purpose of this measures to make the assembly process simpler and more effective for timely controlling rotor initial unbalance.The efforts of this study validate that the proposed method is workable for the rotor tightened by a central tie rod and possesses the significant meaning of practical application in engineering.展开更多
In order to investigate the aerodynamic characteristics of 6-MW wind turbine, experimental study on the aerodynamic characteristics of the model rotor system and on characterization of a wind generation system is carr...In order to investigate the aerodynamic characteristics of 6-MW wind turbine, experimental study on the aerodynamic characteristics of the model rotor system and on characterization of a wind generation system is carried out. In the test, a thrust-matched rotor system and a geometry-matched rotor system, which utilize redesigned thrustmatched and original geometry-matched blades, respectively, are applied. The 6-MW wind turbine system is introduced briefly. The proper scaling laws for model tests are established in the paper, which are then implemented in the construction of a model wind turbine with optimally designed blades. And the parameters of the model are provided. The aerodynamic characteristics of the proposed 6-MW wind rotor system are explored by testing a 1:65.3 scale model at the State Key Laboratory of Ocean Engineering at Shanghai Jiao Tong University. Before carrying out the wind rotor system test, the turbulence intensity and spatial uniformity of the wind generation system are tested and results demonstrate that the characterization of the wind generation system is satisfied and the average turbulence intensity of less than 10% within the wind rotor plane is proved in the test. And then, the aerodynamic characteristics of 6-MW wind rotor system are investigated. The response characteristic differences between the thrust-matched rotor system and the geometry-matched rotor system are presented. Results indicate that the aerodynamic characteristics of 6-MW wind rotor with the thrust-matched rotor system are satisfied. The conclusion is that the thrust-matched rotor system can better reflect the characteristics of the prototype wind turbine. A set of model test method is proposed in the work and preparations for further model basin test of the 6-MW SPAR-type floating offshore wind turbine system are made.展开更多
1. An Overview of Manufacture and Operation A turbine generator utilizing a new technology of electrical machinery industry, i.e. the windings of its stator and rotor all being inner water-cooled, was first successful...1. An Overview of Manufacture and Operation A turbine generator utilizing a new technology of electrical machinery industry, i.e. the windings of its stator and rotor all being inner water-cooled, was first successfully created in China and was known afterwards as a turbine generator with watercooled stator and rotor windings (Abbrev, TGWSR). The teachers from Zhejiang University came to Shanghai between展开更多
In order to develop a general calculating rotor’s torsional stiffness based on stiffness influence coefficient for different rotor assembling, the calculation method of the torsional stiffness influence coefficient o...In order to develop a general calculating rotor’s torsional stiffness based on stiffness influence coefficient for different rotor assembling, the calculation method of the torsional stiffness influence coefficient of equal thickness disc is researched in this paper at first. Then the torsional stiffness influence coefficient λ of equal thickness disc is fit to a binary curved face and a calculation equation is obtained based on a large quantity of calculating data, which lays the foundation for research on a general calculating method of rotor torsional stiffness. Thirdly a simplified calculation method for equivalent stiffness diameter of stepped equal thickness disc and cone disc in the steam turbine generators is suggested. Finally a general calculating program for calculating rotor’s torsional vibration features is developed, and the torsional vibration features of a verity of steam turbine rotors are calculated for verification. The calculating results show that stiffness influence coefficient λ of equal-thickness disc depends on parameters of B and H, as well as the stiffness influence coefficient λ;and discs with complex structure can be simplified to equal-thickness discs with little error by using the method suggested in this paper;error can be controlled within 1% when equivalent diameter of stiffness is calculated by this method.展开更多
In this study,a real-time rotor temperature monitoring system for large turbogenerators using SmartMesh IP wireless network communication technology was designed and tested.The system is capable of providing comprehen...In this study,a real-time rotor temperature monitoring system for large turbogenerators using SmartMesh IP wireless network communication technology was designed and tested.The system is capable of providing comprehensive,accurate,continuous,and reliable real-time temperature monitoring for turbogenerators.Additionally,it has demonstrated satisfactory results in a real-time monitoring test of the rotor temperature of various famous large-scale turbogenerators and giant nuclear power half-speed turbogenerators designed and manufactured in China.The development and application of this wireless temperature measurement system would aid in improving the intelligent operation quality,safety,and stability of China’s large turbine generators and even the entire power system.展开更多
Rotor winding turn-to-turn short circuit is a common electrical fault in steam turbines. When turn-to-turn short circuit fault happens to rotor winding of the generator, the generator terminal parameters will change. ...Rotor winding turn-to-turn short circuit is a common electrical fault in steam turbines. When turn-to-turn short circuit fault happens to rotor winding of the generator, the generator terminal parameters will change. According to these parameters, the conditions of the rotor winding can be reflected. However, it is hard to express the relations between fault information and generator terminal parameters in accurate mathematical formula. The satisfactory results in fault diagnosis can be obtained by the application of neural network. In general, the information about the severity level of the generator faults can be acquired directly when the faulty samples are found in the training samples of neural network. However, the faulty samples are difficult to acquire in practice. In this paper, the relations among active power, reactive power and excitation current are discovered by analyzing the generator mmf with terminal voltage constant. Depending on these relations, a novel diagnosis method of generator rotor winding turn-to-turn short circuit fault is proposed by using ANN method to obtain the fault samples directly, without destructive tests.展开更多
The shrink fit retaining ring is currently the easiest to install and the most widely used end fixed for structure AC excitation variable speed generator-motor rotor end windings.However,the current research on the ef...The shrink fit retaining ring is currently the easiest to install and the most widely used end fixed for structure AC excitation variable speed generator-motor rotor end windings.However,the current research on the effect of high strength sealing on the ventilation and heat dissipation performance of the end is not enough.In this paper,based on the actual structural parameters and periodic symmetry simplification,the three-dimensional coupled calculation model of fluid field and temperature field is established.After solving the fluid and thermal equations,the influence of the length of rotor support block,the height of rotor support block,and the number of rotor support block on the fluid flow and temperature distribution in the rotor end region of generator-motor is studied using the finite volume method.The rheological characteristics of the air in the rotor domain,such as velocity and inter-winding flow,are analyzed.The law of temperature variation with local structure in the computational domain is studied.The variation law of cooling medium performance inside the large variable speed power generator motor is revealed.展开更多
Calculated results of inertia moment of turbo-generator rotor can be quite different by methods used in load rejection tests. In view of fluctuation features of rotor speed rise curve during load rejection tests, the ...Calculated results of inertia moment of turbo-generator rotor can be quite different by methods used in load rejection tests. In view of fluctuation features of rotor speed rise curve during load rejection tests, the measurement principle of rotor inertia moment was expounded. Based on the measured data in load rejection tests for an imported type of domestic 300-MW generating unit, the rotor speed rise curve was fitted with three kinds of functions to get initial runup rate, but the obtained results differed a lot from each other. According to analysis on the mechanism of rotor speed rise, m=2 consecutive points averaging or FFT (Fast Fourier Transform) smoothing technology was introduced to process test data, and then the initial runup rate was determined by the method of linear fitting of rotor speed in the range of governing valve closing time. Although the obtained curves had a fluctuating shape, the results of rotor inertia moment for 50% and 100% load rejection tests were of good consistency.展开更多
Degenerative cervical myelopathy is a common cause of spinal cord injury,with longer symptom duration and higher myelopathy severity indicating a worse prognosis.While numerous studies have investigated serological bi...Degenerative cervical myelopathy is a common cause of spinal cord injury,with longer symptom duration and higher myelopathy severity indicating a worse prognosis.While numerous studies have investigated serological biomarkers for acute spinal cord injury,few studies have explored such biomarkers for diagnosing degenerative cervical myelopathy.This study involved 30 patients with degenerative cervical myelopathy(51.3±7.3 years old,12 women and 18 men),seven healthy controls(25.7±1.7 years old,one woman and six men),and nine patients with cervical spondylotic radiculopathy(51.9±8.6 years old,three women and six men).Analysis of blood samples from the three groups showed clear differences in transcriptomic characteristics.Enrichment analysis identified 128 differentially expressed genes that were enriched in patients with neurological disabilities.Using least absolute shrinkage and selection operator analysis,we constructed a five-gene model(TBCD,TPM2,PNKD,EIF4G2,and AP5Z1)to diagnose degenerative cervical myelopathy with an accuracy of 93.5%.One-gene models(TCAP and SDHA)identified mild and severe degenerative cervical myelopathy with accuracies of 83.3%and 76.7%,respectively.Signatures of two immune cell types(memory B cells and memory-activated CD4^(+)T cells)predicted levels of lesions in degenerative cervical myelopathy with 80%accuracy.Our results suggest that peripheral blood RNA biomarkers could be used to predict lesion severity in degenerative cervical myelopathy.展开更多
The wake generated by the rotor of a helicopter can exert a strong interference effect on the fuselage and the horizontal/vertical tail.The occurrence of icing on the rotor can obviously make this interplay more compl...The wake generated by the rotor of a helicopter can exert a strong interference effect on the fuselage and the horizontal/vertical tail.The occurrence of icing on the rotor can obviously make this interplay more complex.In the present study,numerical simulation is used to analyze the rotor wake in icing conditions.In order to validate the overall mathematical/numerical method,the results are compared with similar data relating to other tests;then,different simulations are conducted considering helicopter forward flight velocities of 0,10,20,50,and 80 knots and various conditions in terms of air temperature(atmospheric temperature degrading from−12°C to−20°C or from−20°C to−26°C).The results indicate that the rotor aerodynamic performance(i.e.,the lift-to-drag ratio distribution of the rotor disc)drops significantly once the rotor undergoes ice accretion.More importantly,the icing exerts a different influence of the wake dynamics depending on the atmospheric conditions.Interestingly,the rime-ice firstly occurs on the inner portion of rotor blades and then diffuses outward along the blade radial direction with the decrease in atmospheric temperature.展开更多
We present an immersed array of four rotors whose promoted flow can be mathematically modeled with a creeping flow solution from the incompressible Navier-Stokes equations. We show that this solution is indeed represe...We present an immersed array of four rotors whose promoted flow can be mathematically modeled with a creeping flow solution from the incompressible Navier-Stokes equations. We show that this solution is indeed representative of the two-dimensional experiment and validate such class of solution with experimental data obtained through the Particle Image Velocimetry technique and time-lapsed particles visualizations.展开更多
Mature oligodendrocytes form myelin sheaths that are crucial for the insulation of axons and efficient signal transmission in the central nervous system.Recent evidence has challenged the classical view of the functio...Mature oligodendrocytes form myelin sheaths that are crucial for the insulation of axons and efficient signal transmission in the central nervous system.Recent evidence has challenged the classical view of the functionally static mature oligodendrocyte and revealed a gamut of dynamic functions such as the ability to modulate neuronal circuitry and provide metabolic support to axons.Despite the recognition of potential heterogeneity in mature oligodendrocyte function,a comprehensive summary of mature oligodendrocyte diversity is lacking.We delve into early 20th-century studies by Robertson and Río-Hortega that laid the foundation for the modern identification of regional and morphological heterogeneity in mature oligodendrocytes.Indeed,recent morphologic and functional studies call into question the long-assumed homogeneity of mature oligodendrocyte function through the identification of distinct subtypes with varying myelination preferences.Furthermore,modern molecular investigations,employing techniques such as single cell/nucleus RNA sequencing,consistently unveil at least six mature oligodendrocyte subpopulations in the human central nervous system that are highly transcriptomically diverse and vary with central nervous system region.Age and disease related mature oligodendrocyte variation denotes the impact of pathological conditions such as multiple sclerosis,Alzheimer's disease,and psychiatric disorders.Nevertheless,caution is warranted when subclassifying mature oligodendrocytes because of the simplification needed to make conclusions about cell identity from temporally confined investigations.Future studies leveraging advanced techniques like spatial transcriptomics and single-cell proteomics promise a more nuanced understanding of mature oligodendrocyte heterogeneity.Such research avenues that precisely evaluate mature oligodendrocyte heterogeneity with care to understand the mitigating influence of species,sex,central nervous system region,age,and disease,hold promise for the development of therapeutic interventions targeting varied central nervous system pathology.展开更多
BACKGROUND The classification of uterine sarcomas is based on distinctive morphological and immunophenotypic characteristics,increasingly supported by molecular genetic diagnostics.Data on neurotrophic tyrosine recept...BACKGROUND The classification of uterine sarcomas is based on distinctive morphological and immunophenotypic characteristics,increasingly supported by molecular genetic diagnostics.Data on neurotrophic tyrosine receptor kinase(NTRK)gene fusionpositive uterine sarcoma,potentially aggressive and morphologically similar to fibrosarcoma,are limited due to its recent recognition.Pan-TRK immunohistochemistry(IHC)analysis serves as an effective screening tool with high sensitivity and specificity for NTRK-fusion malignancies.CASE SUMMARY We report a case of a malignant mesenchymal tumor originating from the uterine cervix,which was pan-TRK IHC-positive but lacked NTRK gene fusions,accompanied by a brief literature review.A 55-year-old woman presented to the emergency department with abdominal pain and distension,exhibiting significant ascites and multiple solid pelvic masses.Pelvic examination revealed a tumor encompassing the uterine cervix,extending to the vagina and uterine corpus.A punch biopsy of the cervix indicated NTRK sarcoma with positive immunochemical pan-TRK stain.However,subsequent next generation sequencing revealed no NTRK gene fusion,leading to a diagnosis of poorly differentiated,advanced-stage sarcoma.CONCLUSION The clinical significance of NTRK gene fusion lies in potential treatment with TRK inhibitors for positive sarcomas.Identifying such rare tumors is crucial due to the potential applicability of tropomyosin receptor kinase inhibitor treatment.展开更多
Nerve regeneration following traumatic peripheral nerve injuries and neuropathies is a complex process modulated by diverse factors and intricate molecular mechanisms.Past studies have focused on factors that stimulat...Nerve regeneration following traumatic peripheral nerve injuries and neuropathies is a complex process modulated by diverse factors and intricate molecular mechanisms.Past studies have focused on factors that stimulate axonal outgrowth and myelin regeneration.However,recent studies have highlighted the pivotal role of autophagy in peripheral nerve regeneration,particularly in the context of traumatic injuries.Consequently,autophagy-targeting modulation has emerged as a promising therapeutic approach to enhancing peripheral nerve regeneration.Our current understanding suggests that activating autophagy facilitates the rapid clearance of damaged axons and myelin sheaths,thereby enhancing neuronal survival and mitigating injury-induced oxidative stress and inflammation.These actions collectively contribute to creating a favorable microenvironment for structural and functional nerve regeneration.A range of autophagyinducing drugs and interventions have demonstrated beneficial effects in alleviating peripheral neuropathy and promoting nerve regeneration in preclinical models of traumatic peripheral nerve injuries.This review delves into the regulation of autophagy in cell types involved in peripheral nerve regeneration,summarizing the potential drugs and interventions that can be harnessed to promote this process.We hope that our review will offer novel insights and perspectives on the exploitation of autophagy pathways in the treatment of peripheral nerve injuries and neuropathies.展开更多
文摘The key and bottleneck of research on the tip-jet rotor compound helicopter lies in the power system. Computational Fluid Dynamics (CFD) was used to numerically simulate the gas generator and rotor inner passage of the tip-jet rotor composite power system, studying the effects of intake mode, inner cavity structure, propellant components, and injection amount on the characteristics of the composite power system. The results show that when a single high-temperature exhaust gas enters, the gas generator outlet fluid is uneven and asymmetric;when two-way high-temperature exhaust gas enters, the outlet temperature of the gas generator with a tilted inlet is more uniform than that with a vertical inlet;adding an inner cavity improves the temperature and velocity distribution of the gas generator's internal flow field;increasing the energy of the propellant is beneficial for improving the available moment.
基金This project is supported by Provincial Science Foundation of Education Office of Hebei(No.Z2004455)Youth Research Fundation of State Power of China(No.SPQKJ02-10).
文摘Rotor vibration characteristics are first analyzed, which are that the rotor vibration of fundamental frequency will increase due to rotor winding inter-turn short circuit fault, air-gap dynamic eccentricity fault, or imbalance fault, and the vibration of the second frequency will increase when the air-gap static eccentricity fault occurs. Next, the characteristics of the stator winding parallel branches circulating current are analyzed, which are that the second harmonics circulating current will increase when the rotor winding inter-turn short circuit fault occurs, and the fundamental circulating current will increase when the air-gap eccentricity fault occurs, neither being strongly affected by the imbalance fault. Considering the differences of the rotor vibration and circulating current characteristics caused by different rotor faults, a method of generator vibration fault diagnosis, based on rotor vibration and circulating current characteristics, is developed. Finally, the rotor vibration and circulating current of a type SDF-9 generator is measured in the laboratory to verify the theoretical analysis presented above.
基金supported by funded by"Ye Qisun"Joint Foundation Project supported by the State Key Program of National Natural Science Foundation of China under Award U2141223.
文摘In order to enhance the transient performance of aircraft high voltage DC(HVDC)generation system with wound rotor synchronous machine(WRSM)under a wide speed range,the nonlinear PI multi-loop control strategy is proposed in this paper.Traditional voltage control method is hard to achieve the dynamic performance requirements of the HVDC generation system under a wide speed range,so the nonlinear PI parameter adjustment,load current feedback and speed feedback are added to the voltage and excitation current double loop control.The transfer function of the HVDC generation system is derived,and the relationship between speed,load current and PI parameters is obtained.The PI parameters corresponding to the load at certain speed are used to shorten the adjusting time when the load suddenly changes.The dynamic responses in transient processes are analyzed by experiment.The results illustrate that the WRSM HVDC generator system with this method has better dynamic performance.
基金Project supported by the National Natural Science Foundation of China(No.10632040)
文摘A nonlinear model of a low pressure cylinder-generator rotor system is presented to study sub-synchronous resonance and combined resonance. Analytical results are obtained by an averaging method. Transition sets and bifurcation diagrams are obtained based on the singularity theory for the two-state variable system. The bifurcation characteristics are analyzed to provide a basis for the optimal design and fault diagnosis of the rotor system. Finally, the theoretical results are verified with the numerical results.
基金supported by the National Natural Science Foundation of China(Grant No.51307124)the Major Program of the National Natural Science Foundation of China(Grant No.51190105)
文摘A novel transient rotor current control scheme is proposed in this paper for a doubly-fed induction generator(DFIG)equipped with a superconducting magnetic energy storage(SMES) device to enhance its transient voltage and frequency support capacity during grid faults. The SMES connected to the DC-link capacitor of the DFIG is controlled to regulate the transient dc-link voltage so that the whole capacity of the grid side converter(GSC) is dedicated to injecting reactive power to the grid for the transient voltage support. However, the rotor-side converter(RSC) has different control tasks for different periods of the grid fault. Firstly, for Period I, the RSC injects the demagnetizing current to ensure the controllability of the rotor voltage. Then, since the dc stator flux degenerates rapidly in Period II, the required demagnetizing current is low in Period II and the RSC uses the spare capacity to additionally generate the reactive(priority) and active current so that the transient voltage capability is corroborated and the DFIG also positively responds to the system frequency dynamic at the earliest time. Finally, a small amount of demagnetizing current is provided after the fault clearance. Most of the RSC capacity is used to inject the active current to further support the frequency recovery of the system. Simulations are carried out on a simple power system with a wind farm. Comparisons with other commonly used control methods are performed to validate the proposed control method.
文摘Earlier measurements in large synchronous generators indicate the existence of complex whirling motion, and also deviations of shape in both the rotor and the stator. These non-symmetric geometries produce an attraction force between the rotor and the stator,called unbalanced magnetic pull(UMP).The target of this paper is to analyse responses due to certain deviations of shape in the rotor and the stator.In particular,the perturbation on the rotor is considered to be of oval character,and the perturbations of the stator are considered triangular.By numerical and analytical methods it is concluded for which generator parameters harmful conditions,such as complicated whirling motion and high amplitudes,will occur.During maintenance of hydro power generators the shapes of the rotor and stator are frequently measured.The results from this paper can be used to evaluate such measurements and to explain the existence of complex whirling motion.
文摘The rotor initial unbalance of an aeroengine gas generator of turboshaft engine seriously affects rotor assembly process.To reasonably optimize rotor assembly process,the effect analyses of rotor initial unbalance of single disc and combined discs on rotor dynamic characteristics are firstly implemented in respect of the dispersity of rotor initial unbalance.It is found that the most important factors contributing to rotor vibration are the unbalances of the first stage compressor disc and the second stage turbine disc.However,reducing the mass of two discs conflicts with the control of the whole gas generator rotor balance resulting from the unbalance increase of single components.Thus,we further analyze the key control factors of affecting rotor initial unbalance,and give the strict control measures of centrifugal impeller runout in the assembly process by adjusting the angle of central tie rod axis.The purpose of this measures to make the assembly process simpler and more effective for timely controlling rotor initial unbalance.The efforts of this study validate that the proposed method is workable for the rotor tightened by a central tie rod and possesses the significant meaning of practical application in engineering.
基金financially supported by the National Basic Research Program of China(973 Program,Grant No.2014CB046205)
文摘In order to investigate the aerodynamic characteristics of 6-MW wind turbine, experimental study on the aerodynamic characteristics of the model rotor system and on characterization of a wind generation system is carried out. In the test, a thrust-matched rotor system and a geometry-matched rotor system, which utilize redesigned thrustmatched and original geometry-matched blades, respectively, are applied. The 6-MW wind turbine system is introduced briefly. The proper scaling laws for model tests are established in the paper, which are then implemented in the construction of a model wind turbine with optimally designed blades. And the parameters of the model are provided. The aerodynamic characteristics of the proposed 6-MW wind rotor system are explored by testing a 1:65.3 scale model at the State Key Laboratory of Ocean Engineering at Shanghai Jiao Tong University. Before carrying out the wind rotor system test, the turbulence intensity and spatial uniformity of the wind generation system are tested and results demonstrate that the characterization of the wind generation system is satisfied and the average turbulence intensity of less than 10% within the wind rotor plane is proved in the test. And then, the aerodynamic characteristics of 6-MW wind rotor system are investigated. The response characteristic differences between the thrust-matched rotor system and the geometry-matched rotor system are presented. Results indicate that the aerodynamic characteristics of 6-MW wind rotor with the thrust-matched rotor system are satisfied. The conclusion is that the thrust-matched rotor system can better reflect the characteristics of the prototype wind turbine. A set of model test method is proposed in the work and preparations for further model basin test of the 6-MW SPAR-type floating offshore wind turbine system are made.
文摘1. An Overview of Manufacture and Operation A turbine generator utilizing a new technology of electrical machinery industry, i.e. the windings of its stator and rotor all being inner water-cooled, was first successfully created in China and was known afterwards as a turbine generator with watercooled stator and rotor windings (Abbrev, TGWSR). The teachers from Zhejiang University came to Shanghai between
文摘In order to develop a general calculating rotor’s torsional stiffness based on stiffness influence coefficient for different rotor assembling, the calculation method of the torsional stiffness influence coefficient of equal thickness disc is researched in this paper at first. Then the torsional stiffness influence coefficient λ of equal thickness disc is fit to a binary curved face and a calculation equation is obtained based on a large quantity of calculating data, which lays the foundation for research on a general calculating method of rotor torsional stiffness. Thirdly a simplified calculation method for equivalent stiffness diameter of stepped equal thickness disc and cone disc in the steam turbine generators is suggested. Finally a general calculating program for calculating rotor’s torsional vibration features is developed, and the torsional vibration features of a verity of steam turbine rotors are calculated for verification. The calculating results show that stiffness influence coefficient λ of equal-thickness disc depends on parameters of B and H, as well as the stiffness influence coefficient λ;and discs with complex structure can be simplified to equal-thickness discs with little error by using the method suggested in this paper;error can be controlled within 1% when equivalent diameter of stiffness is calculated by this method.
基金supported by the National Natura Science Foundation of China (NSFC), No.51607146China National Major Science and Technology Projects 2010ZX06004-013-04-02 and 2012ZX06002-017-02-01+1 种基金Sichuan Science and Technology Program,No.2018GZ0391Sichuan Hydropower Energy and power equipment technology Engineering Research Center, Xihua university, Chengdu 610039, China,No.SDNY2020-001
文摘In this study,a real-time rotor temperature monitoring system for large turbogenerators using SmartMesh IP wireless network communication technology was designed and tested.The system is capable of providing comprehensive,accurate,continuous,and reliable real-time temperature monitoring for turbogenerators.Additionally,it has demonstrated satisfactory results in a real-time monitoring test of the rotor temperature of various famous large-scale turbogenerators and giant nuclear power half-speed turbogenerators designed and manufactured in China.The development and application of this wireless temperature measurement system would aid in improving the intelligent operation quality,safety,and stability of China’s large turbine generators and even the entire power system.
文摘Rotor winding turn-to-turn short circuit is a common electrical fault in steam turbines. When turn-to-turn short circuit fault happens to rotor winding of the generator, the generator terminal parameters will change. According to these parameters, the conditions of the rotor winding can be reflected. However, it is hard to express the relations between fault information and generator terminal parameters in accurate mathematical formula. The satisfactory results in fault diagnosis can be obtained by the application of neural network. In general, the information about the severity level of the generator faults can be acquired directly when the faulty samples are found in the training samples of neural network. However, the faulty samples are difficult to acquire in practice. In this paper, the relations among active power, reactive power and excitation current are discovered by analyzing the generator mmf with terminal voltage constant. Depending on these relations, a novel diagnosis method of generator rotor winding turn-to-turn short circuit fault is proposed by using ANN method to obtain the fault samples directly, without destructive tests.
基金This research was funded by Dongfang Electric Machinery Co., Ltd.
文摘The shrink fit retaining ring is currently the easiest to install and the most widely used end fixed for structure AC excitation variable speed generator-motor rotor end windings.However,the current research on the effect of high strength sealing on the ventilation and heat dissipation performance of the end is not enough.In this paper,based on the actual structural parameters and periodic symmetry simplification,the three-dimensional coupled calculation model of fluid field and temperature field is established.After solving the fluid and thermal equations,the influence of the length of rotor support block,the height of rotor support block,and the number of rotor support block on the fluid flow and temperature distribution in the rotor end region of generator-motor is studied using the finite volume method.The rheological characteristics of the air in the rotor domain,such as velocity and inter-winding flow,are analyzed.The law of temperature variation with local structure in the computational domain is studied.The variation law of cooling medium performance inside the large variable speed power generator motor is revealed.
文摘Calculated results of inertia moment of turbo-generator rotor can be quite different by methods used in load rejection tests. In view of fluctuation features of rotor speed rise curve during load rejection tests, the measurement principle of rotor inertia moment was expounded. Based on the measured data in load rejection tests for an imported type of domestic 300-MW generating unit, the rotor speed rise curve was fitted with three kinds of functions to get initial runup rate, but the obtained results differed a lot from each other. According to analysis on the mechanism of rotor speed rise, m=2 consecutive points averaging or FFT (Fast Fourier Transform) smoothing technology was introduced to process test data, and then the initial runup rate was determined by the method of linear fitting of rotor speed in the range of governing valve closing time. Although the obtained curves had a fluctuating shape, the results of rotor inertia moment for 50% and 100% load rejection tests were of good consistency.
基金supported by Hunan Provincial Key Research and Development Program,No.2021SK2002(to BW)the Natural Science Foundation of Hunan Province of China(General Program),No.2021JJ30938(to YL)。
文摘Degenerative cervical myelopathy is a common cause of spinal cord injury,with longer symptom duration and higher myelopathy severity indicating a worse prognosis.While numerous studies have investigated serological biomarkers for acute spinal cord injury,few studies have explored such biomarkers for diagnosing degenerative cervical myelopathy.This study involved 30 patients with degenerative cervical myelopathy(51.3±7.3 years old,12 women and 18 men),seven healthy controls(25.7±1.7 years old,one woman and six men),and nine patients with cervical spondylotic radiculopathy(51.9±8.6 years old,three women and six men).Analysis of blood samples from the three groups showed clear differences in transcriptomic characteristics.Enrichment analysis identified 128 differentially expressed genes that were enriched in patients with neurological disabilities.Using least absolute shrinkage and selection operator analysis,we constructed a five-gene model(TBCD,TPM2,PNKD,EIF4G2,and AP5Z1)to diagnose degenerative cervical myelopathy with an accuracy of 93.5%.One-gene models(TCAP and SDHA)identified mild and severe degenerative cervical myelopathy with accuracies of 83.3%and 76.7%,respectively.Signatures of two immune cell types(memory B cells and memory-activated CD4^(+)T cells)predicted levels of lesions in degenerative cervical myelopathy with 80%accuracy.Our results suggest that peripheral blood RNA biomarkers could be used to predict lesion severity in degenerative cervical myelopathy.
文摘The wake generated by the rotor of a helicopter can exert a strong interference effect on the fuselage and the horizontal/vertical tail.The occurrence of icing on the rotor can obviously make this interplay more complex.In the present study,numerical simulation is used to analyze the rotor wake in icing conditions.In order to validate the overall mathematical/numerical method,the results are compared with similar data relating to other tests;then,different simulations are conducted considering helicopter forward flight velocities of 0,10,20,50,and 80 knots and various conditions in terms of air temperature(atmospheric temperature degrading from−12°C to−20°C or from−20°C to−26°C).The results indicate that the rotor aerodynamic performance(i.e.,the lift-to-drag ratio distribution of the rotor disc)drops significantly once the rotor undergoes ice accretion.More importantly,the icing exerts a different influence of the wake dynamics depending on the atmospheric conditions.Interestingly,the rime-ice firstly occurs on the inner portion of rotor blades and then diffuses outward along the blade radial direction with the decrease in atmospheric temperature.
文摘We present an immersed array of four rotors whose promoted flow can be mathematically modeled with a creeping flow solution from the incompressible Navier-Stokes equations. We show that this solution is indeed representative of the two-dimensional experiment and validate such class of solution with experimental data obtained through the Particle Image Velocimetry technique and time-lapsed particles visualizations.
基金supported by a grant from the Progressive MS Alliance(BRAVE in MS)Le Grand Portage Fund。
文摘Mature oligodendrocytes form myelin sheaths that are crucial for the insulation of axons and efficient signal transmission in the central nervous system.Recent evidence has challenged the classical view of the functionally static mature oligodendrocyte and revealed a gamut of dynamic functions such as the ability to modulate neuronal circuitry and provide metabolic support to axons.Despite the recognition of potential heterogeneity in mature oligodendrocyte function,a comprehensive summary of mature oligodendrocyte diversity is lacking.We delve into early 20th-century studies by Robertson and Río-Hortega that laid the foundation for the modern identification of regional and morphological heterogeneity in mature oligodendrocytes.Indeed,recent morphologic and functional studies call into question the long-assumed homogeneity of mature oligodendrocyte function through the identification of distinct subtypes with varying myelination preferences.Furthermore,modern molecular investigations,employing techniques such as single cell/nucleus RNA sequencing,consistently unveil at least six mature oligodendrocyte subpopulations in the human central nervous system that are highly transcriptomically diverse and vary with central nervous system region.Age and disease related mature oligodendrocyte variation denotes the impact of pathological conditions such as multiple sclerosis,Alzheimer's disease,and psychiatric disorders.Nevertheless,caution is warranted when subclassifying mature oligodendrocytes because of the simplification needed to make conclusions about cell identity from temporally confined investigations.Future studies leveraging advanced techniques like spatial transcriptomics and single-cell proteomics promise a more nuanced understanding of mature oligodendrocyte heterogeneity.Such research avenues that precisely evaluate mature oligodendrocyte heterogeneity with care to understand the mitigating influence of species,sex,central nervous system region,age,and disease,hold promise for the development of therapeutic interventions targeting varied central nervous system pathology.
基金Supported by Grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute,funded by the Ministry of Health&Welfare,Republic of Korea,No.RS-2022-KH129889.
文摘BACKGROUND The classification of uterine sarcomas is based on distinctive morphological and immunophenotypic characteristics,increasingly supported by molecular genetic diagnostics.Data on neurotrophic tyrosine receptor kinase(NTRK)gene fusionpositive uterine sarcoma,potentially aggressive and morphologically similar to fibrosarcoma,are limited due to its recent recognition.Pan-TRK immunohistochemistry(IHC)analysis serves as an effective screening tool with high sensitivity and specificity for NTRK-fusion malignancies.CASE SUMMARY We report a case of a malignant mesenchymal tumor originating from the uterine cervix,which was pan-TRK IHC-positive but lacked NTRK gene fusions,accompanied by a brief literature review.A 55-year-old woman presented to the emergency department with abdominal pain and distension,exhibiting significant ascites and multiple solid pelvic masses.Pelvic examination revealed a tumor encompassing the uterine cervix,extending to the vagina and uterine corpus.A punch biopsy of the cervix indicated NTRK sarcoma with positive immunochemical pan-TRK stain.However,subsequent next generation sequencing revealed no NTRK gene fusion,leading to a diagnosis of poorly differentiated,advanced-stage sarcoma.CONCLUSION The clinical significance of NTRK gene fusion lies in potential treatment with TRK inhibitors for positive sarcomas.Identifying such rare tumors is crucial due to the potential applicability of tropomyosin receptor kinase inhibitor treatment.
基金supported by the National Natural Science Foundation of China,Nos.82271411(to RG),51803072(to WLiu)grants from the Department of Finance of Jilin Province,Nos.2022SCZ25(to RG),2022SCZ10(to WLiu),2021SCZ07(to RG)+2 种基金Jilin Provincial Science and Technology Program,No.YDZJ202201ZYTS038(to WLiu)The Youth Support Programmed Project of China-Japan Union Hospital of Jilin University,No.2022qnpy11(to WLuo)The Project of China-Japan Union Hospital of Jilin University,No.XHQMX20233(to RG)。
文摘Nerve regeneration following traumatic peripheral nerve injuries and neuropathies is a complex process modulated by diverse factors and intricate molecular mechanisms.Past studies have focused on factors that stimulate axonal outgrowth and myelin regeneration.However,recent studies have highlighted the pivotal role of autophagy in peripheral nerve regeneration,particularly in the context of traumatic injuries.Consequently,autophagy-targeting modulation has emerged as a promising therapeutic approach to enhancing peripheral nerve regeneration.Our current understanding suggests that activating autophagy facilitates the rapid clearance of damaged axons and myelin sheaths,thereby enhancing neuronal survival and mitigating injury-induced oxidative stress and inflammation.These actions collectively contribute to creating a favorable microenvironment for structural and functional nerve regeneration.A range of autophagyinducing drugs and interventions have demonstrated beneficial effects in alleviating peripheral neuropathy and promoting nerve regeneration in preclinical models of traumatic peripheral nerve injuries.This review delves into the regulation of autophagy in cell types involved in peripheral nerve regeneration,summarizing the potential drugs and interventions that can be harnessed to promote this process.We hope that our review will offer novel insights and perspectives on the exploitation of autophagy pathways in the treatment of peripheral nerve injuries and neuropathies.