期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Improving Generalization of Fuzzy Neural Network
1
作者 ZHENG Deling LI Qing +1 位作者 FANG Wei(Information Engineering School, USTB, Beijing 100083, China) (China National Electronics Imp. &Exp. Beijing Co.) 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 1997年第2期57-59,共3页
Explores the generalization error of fuzzy neural network, analyzes the reason for occurrence and presents the equation of calculating error by the confidence interval approach. In addition, a generalization error tra... Explores the generalization error of fuzzy neural network, analyzes the reason for occurrence and presents the equation of calculating error by the confidence interval approach. In addition, a generalization error transfering(GET) method of improving the generalization error is proposed. The simulation experimental results of heating furnance show that the GET scheme is efficient. 展开更多
关键词 neural network fuzzy system generalization error
下载PDF
The Fuzzy Modeling Algorithm for Complex Systems Based on Stochastic Neural Network
2
作者 李波 张世英 李银惠 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2002年第3期46-51,共6页
A fuzzy modeling method for complex systems is studied. The notation of general stochastic neural network (GSNN) is presented and a new modeling method is given based on the combination of the modified Takagi and Suge... A fuzzy modeling method for complex systems is studied. The notation of general stochastic neural network (GSNN) is presented and a new modeling method is given based on the combination of the modified Takagi and Sugeno's (MTS) fuzzy model and one-order GSNN. Using expectation-maximization(EM) algorithm, parameter estimation and model selection procedures are given. It avoids the shortcomings brought by other methods such as BP algorithm, when the number of parameters is large, BP algorithm is still difficult to apply directly without fine tuning and subjective tinkering. Finally, the simulated example demonstrates the effectiveness. 展开更多
关键词 Complex system modeling general stochastic neural network MTS fuzzy model Expectation-maximization algorithm
下载PDF
Integration of Learning Algorithm on Fuzzy Min-Max Neural Networks
3
作者 胡静 罗宜元 《Journal of Shanghai Jiaotong university(Science)》 EI 2017年第6期733-741,共9页
An integrated fuzzy min-max neural network(IFMMNN) is developed to avoid the classification result influenced by the input sequence of training samples, and the learning algorithm can be used as pure clustering,pure c... An integrated fuzzy min-max neural network(IFMMNN) is developed to avoid the classification result influenced by the input sequence of training samples, and the learning algorithm can be used as pure clustering,pure classification, or a hybrid clustering classification. Three experiments are designed to realize the aim. The serial input of samples is changed to parallel input, and the fuzzy membership function is substituted by similarity matrix. The experimental results show its superiority in contrast with the original method proposed by Simpson. 展开更多
关键词 fuzzy min-max neural network(FMMNN) supervised and unsupervised learning clustering and classification learning algorithm SIMILARITY
原文传递
一般模糊极大-极小神经网络的研究与应用
4
作者 马安伟 张洪伟 潘俊曲 《计算机工程》 CAS CSCD 北大核心 2008年第19期218-221,共4页
分析一般模糊极大-极小神经网络的基本原理,阐述模糊计算方法在分类中的准确性和高效性。将一般模糊极大-极小神经网络应用于企业资信评估中,实现模糊区间的输入,缩小企业评估指标定量化中的误差范围。资信评估结果表明,该算法能快速、... 分析一般模糊极大-极小神经网络的基本原理,阐述模糊计算方法在分类中的准确性和高效性。将一般模糊极大-极小神经网络应用于企业资信评估中,实现模糊区间的输入,缩小企业评估指标定量化中的误差范围。资信评估结果表明,该算法能快速、有效地对企业进行分类,为资信评估提供了解决方案。 展开更多
关键词 资信评估 模糊集 一般模糊极大-极小神经网络 超盒 隶属函数
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部