In the present paper,we prove the existence,non-existence and multiplicity of positive normalized solutions(λ_(c),u_(c))∈R×H^(1)(R^(N))to the general Kirchhoff problem-M■,satisfying the normalization constrain...In the present paper,we prove the existence,non-existence and multiplicity of positive normalized solutions(λ_(c),u_(c))∈R×H^(1)(R^(N))to the general Kirchhoff problem-M■,satisfying the normalization constraint f_(R)^N u^2dx=c,where M∈C([0,∞))is a given function satisfying some suitable assumptions.Our argument is not by the classical variational method,but by a global branch approach developed by Jeanjean et al.[J Math Pures Appl,2024,183:44–75]and a direct correspondence,so we can handle in a unified way the nonlinearities g(s),which are either mass subcritical,mass critical or mass supercritical.展开更多
We consider the persistence of affine periodic solutions for perturbed affine periodic systems.Such(Q,T)-affine periodic solutions have the form x(t+T)=Qx(t)for all t∈R,where T>0 is fixed and Q is a nonsingular ma...We consider the persistence of affine periodic solutions for perturbed affine periodic systems.Such(Q,T)-affine periodic solutions have the form x(t+T)=Qx(t)for all t∈R,where T>0 is fixed and Q is a nonsingular matrix.These are a kind of spatiotemporal symmetric solutions,e.g.spiral waves.We give the averaging method for the existence of affine periodic solutions in two situations:one in which the initial values of the affine periodic solutions of the unperturbed system form a manifold,and another that does not rely on the structure of the initial values of the unperturbed system's affine periodic solutions.The transversal condition is determined using the Brouwer degree.We also present a higher order averaging method for general degenerate systems by means of the Brouwer degree and a Lyapunov-Schmidt reduction.展开更多
Under investigation is an integrable generalization of the Fokas–Lenells equation, which can be derived from the negative power flow of a 2 × 2 matrix spectral problem with three potentials. Based on the gauge t...Under investigation is an integrable generalization of the Fokas–Lenells equation, which can be derived from the negative power flow of a 2 × 2 matrix spectral problem with three potentials. Based on the gauge transformation of the matrix spectral problem, one kind of Darboux transformation with multi-parameters for the three-component coupled Fokas–Lenells system is constructed. As a reduction, the N-fold Darboux transformation for the generalized Fokas–Lenells equation is obtained, from which the N-soliton solution in a compact Vandermonde-like determinant form is given. Particularly,the explicit one-and two-soliton solutions are presented and their dynamical behaviors are shown graphically.展开更多
We study the existence of solutions for Kirchhoff-type equations.Firstly,we use the Sobolev inequality and the weakly lower semi-continuity of the norm to prove that the corresponding function can reach the global min...We study the existence of solutions for Kirchhoff-type equations.Firstly,we use the Sobolev inequality and the weakly lower semi-continuity of the norm to prove that the corresponding function can reach the global minimum.Then,we use the variational method and some analytical techniques to obtain the existence of the positive solution of the equation whenλis small enough.展开更多
We study exact solutions to (1 + 1)-dimensional generalized Boussinesq equation with time-space dispersion term by making use of improved sub-equation method, and analyse the dynamical behavior and exact solutions of ...We study exact solutions to (1 + 1)-dimensional generalized Boussinesq equation with time-space dispersion term by making use of improved sub-equation method, and analyse the dynamical behavior and exact solutions of the sub-equation after constructing the nonlinear transformation and constraint conditions. Accordingly, we obtain twenty families of exact solutions such as analytical and singular solitons and singular periodic waves. In addition, we discuss the impact of system parameters on wave propagation.展开更多
This paper studies the non-homogeneous generalized Riemann-Hilbert(RH)problems involving two unknown functions.Using the uniformization theorem,such problems are transformed into the case of homogeneous type.By the th...This paper studies the non-homogeneous generalized Riemann-Hilbert(RH)problems involving two unknown functions.Using the uniformization theorem,such problems are transformed into the case of homogeneous type.By the theory of classical boundary value problems,we adopt a novel method to obtain the sectionally analytic solutions of problems in strip domains,and analyze the conditions of solvability and properties of solutions in various domains.展开更多
BACKGROUND Esophageal stricture ranks among the most significant complications following endoscopic submucosal dissection(ESD).Excessive fibrotic repair is a typical pathological feature leading to stenosis after ESD....BACKGROUND Esophageal stricture ranks among the most significant complications following endoscopic submucosal dissection(ESD).Excessive fibrotic repair is a typical pathological feature leading to stenosis after ESD.AIM To examine the effectiveness and underlying mechanism of Kangfuxin solution(KFX)in mitigating excessive fibrotic repair of the esophagus post-ESD.METHODS Pigs received KFX at 0.74 mL/kg/d for 21 days after esophageal full circumferential ESD.Endoscopic examinations occurred on days 7 and 21 post-ESD.In vitro,recombinant transforming growth factor(TGF)-β1(5 ng/mL)induced a fibrotic microenvironment in primary esophageal fibroblasts(pEsF).After 24 hours of KFX treatment(at 1.5%,1%,and 0.5%),expression ofα-smooth muscle actin-2(ACTA2),fibronectin(FN),and type collagen I was assessed.Profibrotic signaling was analyzed,including TGF-β1,Smad2/3,and phosphor-smad2/3(p-Smad2/3).RESULTS Compared to the Control group,the groups treated with KFX and prednisolone exhibited reduced esophageal stenosis,lower weight loss rates,and improved food tolerance 21 d after ESD.After treatment,Masson staining revealed thinner and less dense collagen fibers in the submucosal layer.Additionally,the expression of fibrotic effector molecules was notably inhibited.Mechanistically,KFX downregulated the transduction levels of fibrotic functional molecules such as TGF-β1,Smad2/3,and p-Smad2/3.In vitro,pEsF exposed to TGF-β1-induced fibrotic microenvironment displayed increased fibrotic activity,which was reversed by KFX treatment,leading to reduced activation of ACTA2,FN,and collagen I.The 1.5%KFX treatment group showed decreased expression of p-Smad 2/3 in TGF-β1-activated pEsF.CONCLUSION KFX showed promise as a therapeutic option for post-full circumferential esophageal ESD strictures,potentially by suppressing fibroblast fibrotic activity through modulation of the TGF-β1/Smads signaling pathway.展开更多
The existence of periodic solutions for a kind of generalized Liénard typed functional differential equation is studied. By means of the continuation theorem of coincidence degree theory, existence criteria are ...The existence of periodic solutions for a kind of generalized Liénard typed functional differential equation is studied. By means of the continuation theorem of coincidence degree theory, existence criteria are established for the existence of periodic solutions and some previous results are extended.展开更多
Generally unitary solution to the system of martix equations over the quaternion field [X mA ns =B ns ,X nn C nt =D nt ] is considered. A necessary and sufficient condition for the existence o...Generally unitary solution to the system of martix equations over the quaternion field [X mA ns =B ns ,X nn C nt =D nt ] is considered. A necessary and sufficient condition for the existence of and the expression for the generally unitary solution of the system are derived.展开更多
Using the Nevanlinna theory of the value distribution of meromorphic functions, we investigate the existence problem of admissible algebroid solutions of generalized complex algebraic differential equations and obtain...Using the Nevanlinna theory of the value distribution of meromorphic functions, we investigate the existence problem of admissible algebroid solutions of generalized complex algebraic differential equations and obtain some results.展开更多
First, based on the basic equations of two-dimensional piezoelectroelasticity, a displacement function is introduced and the general solution is then derived. Utilizing the generalized Almansi's theorem, the gener...First, based on the basic equations of two-dimensional piezoelectroelasticity, a displacement function is introduced and the general solution is then derived. Utilizing the generalized Almansi's theorem, the general solution is so simplified that all physical quantities can be expressed by three 'harmonic functions'. Second, solutions of problems of a wedge loaded by point forces and point charge at the apex are also obtained in the paper. These solutions can be degenerated to those of problems of point forces and point charge acting on the line boundary of a piezoelectric half-plane.展开更多
A general solution for 3D Stokes flow is given which is different from, and more compact than the exist ing ones and more compact than them in that it involves only two scalar harmonic functions. The general solution ...A general solution for 3D Stokes flow is given which is different from, and more compact than the exist ing ones and more compact than them in that it involves only two scalar harmonic functions. The general solution deduced is combined with the potential theory method to study the Stokes flow induced by a rigid plate of arbitrary shape trans lating along the direction normal to it in an unbounded fluid. The boundary integral equation governing this problem is derived. When the plate is elliptic, exact analytical results are obtained not only for the drag force but also for the ve locity distributions. These results include and complete the ones available for a circular plate. Numerical examples are provided to illustrate the main results for circular and ellip tic plates. In particular, the elliptic eccentricity of a plate is shown to exhibit significant influences.展开更多
The thermoelastic plane problems of two-dimensional decagonal quasicrystals(QCs)are systematically investigated.By introducing a displacement function,the problem of thermoelastic plane problems can be simplified to a...The thermoelastic plane problems of two-dimensional decagonal quasicrystals(QCs)are systematically investigated.By introducing a displacement function,the problem of thermoelastic plane problems can be simplified to an eighth-order partial differential governing equation,and then general solutions are presented through an operator method.By virtue of the Almansi′s theorem,the general solutions are further established,and all expressions for the phonon,phason and thermal fields are described in terms of the potential functions.As an application of the general solution,for a steady point heat source in a semi-infinite quasicrystal plane,the closed form solutions are presented by four newly induced harmonic functions.展开更多
The effect of kinematic hardening behavior on the shakedown behaviors of structure has been investigated by performing shakedown analysis for some specific problems. The results obtained only show that the shakedown l...The effect of kinematic hardening behavior on the shakedown behaviors of structure has been investigated by performing shakedown analysis for some specific problems. The results obtained only show that the shakedown limit loads of structures with kinematic hardening model are larger than or equal to those with perfectly plastic model of the same initial yield stress. To further investigate the rules governing the different shakedown behaviors of kinematic hardening structures, the extended shakedown theorem for limited kinematic hardening is applied, the shakedown condition is then proposed, and a general analytical solution for the structural shakedown limit load is thus derived. The analytical shakedown limit loads for fully reversed cyclic loading and non-fully reversed cyclic loading are then given based on the general solution. The resulting analytical solution is applied to some specific problems: a hollow specimen subjected to tension and torsion, a flanged pipe subjected to pressure and axial force and a square plate with small central hole subjected to biaxial tension. The results obtained are compared with those in literatures, they are consistent with each other. Based on the resulting general analytical solution, rules governing the general effects of kinematic hardening behavior on the shakedown behavior of structure are clearly.展开更多
In this manuscript,a reduced(3+1)-dimensional nonlinear evolution equation is studied.We first construct the bilinear formalism of the equation by using the binary Bell polynomials theory,then explore a lump solution ...In this manuscript,a reduced(3+1)-dimensional nonlinear evolution equation is studied.We first construct the bilinear formalism of the equation by using the binary Bell polynomials theory,then explore a lump solution to the special case for z=x.Furthermore,a more general form of lump solution of the equation is found which possesses seven arbitrary parameters and four constraint conditions.By cutting the lump by the induced soliton(s),lumpoff and instanton/rogue wave solutions are also constructed by the more general form of lump solution.展开更多
By asing the nonclassical method of symmetry reductions, the exact solutions for general variable coefficient KdV equation with dissipative loss and nonuniformity terms are obtained. When the dissipative loss and non...By asing the nonclassical method of symmetry reductions, the exact solutions for general variable coefficient KdV equation with dissipative loss and nonuniformity terms are obtained. When the dissipative loss and nonuniformity terms don't exist, the multisoliton solutions are found and the corresponding Painleve II type equation for the variable coefficient KdV equation is given.展开更多
In this paper, solutions to the generalized Sylvester matrix equations AX -XF = BY and MXN -X = TY with A, M ∈ R^n×n, B, T ∈ Rn×r, F, N ∈ R^p×p and the matrices N, F being in companion form, are est...In this paper, solutions to the generalized Sylvester matrix equations AX -XF = BY and MXN -X = TY with A, M ∈ R^n×n, B, T ∈ Rn×r, F, N ∈ R^p×p and the matrices N, F being in companion form, are established by a singular value decomposition of a matrix with dimensions n × (n + pr). The algorithm proposed in this paper for the euqation AX - XF = BY does not require the controllability of matrix pair (A, B) and the restriction that A, F do not have common eigenvalues. Since singular value decomposition is adopted, the algorithm is numerically stable and may provide great convenience to the computation of the solution to these equations, and can perform important functions in many design problems in control systems theory.展开更多
Objective: To investigate the dynamics of vascular volume and the plasma dilution of lactated Ringer's solution in patients during the induction of general and epidural anesthesia. Methods: The hemodilution of i.v....Objective: To investigate the dynamics of vascular volume and the plasma dilution of lactated Ringer's solution in patients during the induction of general and epidural anesthesia. Methods: The hemodilution of i.v. infusion of 1000 ml of lactated Ringer's solution over 60 min was studied in patients undergoing general (n=31) and epidural (n= 22) anesthesia. Heart rate, arterial blood pressure and hemoglobin (Hb) concentration were measured every 5 rain during the study. Surgery was not started until the study period had been completed. Results: General anesthesia caused the greater decrease of mean arterial blood pressure (MAP) (mean 15% versus 9%; P〈0.01) and thereby followed by a more pronounced plasma dilution, blood volume expansion (VE) and blood volume expansion efficiency (VEE). A strong linear correlation between hemodilution and the reduction in MAP (r=-0.50;P〈0.01) was found. At the end of infusion, patients undergoing general anesthesia retained 47% (SD 19%) of the infused fluid in the circulation, while epidural anesthesia retained 29% (SD 13%) (P〈0.001). Correspondingly, a fewer urine output (mean 89 ml versus 156 ml; P〈0.05) and extravascular expansion (454 ml versus 551 ml; P〈0.05) were found during general anesthesia. Conclusion: We concluded that the induction of general anesthesia caused more hemodilution, volume expansion and volume expansion efficiency than epidural anesthesia, which was triggered only by the lower MAP.展开更多
The authors of this article are interested in characterization of efficient solutions for special classes of problems. These classes consider semi-strong E-convexity of involved functions. Sufficient and necessary con...The authors of this article are interested in characterization of efficient solutions for special classes of problems. These classes consider semi-strong E-convexity of involved functions. Sufficient and necessary conditions for a feasible solution to be an efficient or properly efficient solution are obtained.展开更多
Based on the Grammian and Pfaffian derivative formulae, Grammian and Pfaffian solutions are obtained for a (3+1)-dimensional generalized shallow water equation in the Hirota bilinear form. Moreover, a Pfaffian exte...Based on the Grammian and Pfaffian derivative formulae, Grammian and Pfaffian solutions are obtained for a (3+1)-dimensional generalized shallow water equation in the Hirota bilinear form. Moreover, a Pfaffian extension is made for the equation by means of the Pfaffianization procedure, the Wronski-type and Gramm-type Pfaffian solutions of the resulting coupled system are presented.展开更多
基金supported by the NSFC(12271184)the Guangzhou Basic and Applied Basic Research Foundation(2024A04J10001).
文摘In the present paper,we prove the existence,non-existence and multiplicity of positive normalized solutions(λ_(c),u_(c))∈R×H^(1)(R^(N))to the general Kirchhoff problem-M■,satisfying the normalization constraint f_(R)^N u^2dx=c,where M∈C([0,∞))is a given function satisfying some suitable assumptions.Our argument is not by the classical variational method,but by a global branch approach developed by Jeanjean et al.[J Math Pures Appl,2024,183:44–75]and a direct correspondence,so we can handle in a unified way the nonlinearities g(s),which are either mass subcritical,mass critical or mass supercritical.
基金supported by the National Natural Science Foundation of China(1237119112071175)+4 种基金supported by the NSFC(1207117511901080)supported by the NSFC(12071175)the Fundamental Research Funds For the Central Universities(2412023YQ003)the Natural Science Foundation of Jilin Province(20200201253JC)。
文摘We consider the persistence of affine periodic solutions for perturbed affine periodic systems.Such(Q,T)-affine periodic solutions have the form x(t+T)=Qx(t)for all t∈R,where T>0 is fixed and Q is a nonsingular matrix.These are a kind of spatiotemporal symmetric solutions,e.g.spiral waves.We give the averaging method for the existence of affine periodic solutions in two situations:one in which the initial values of the affine periodic solutions of the unperturbed system form a manifold,and another that does not rely on the structure of the initial values of the unperturbed system's affine periodic solutions.The transversal condition is determined using the Brouwer degree.We also present a higher order averaging method for general degenerate systems by means of the Brouwer degree and a Lyapunov-Schmidt reduction.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12326305,11931017,and 12271490)the Excellent Youth Science Fund Project of Henan Province(Grant No.242300421158)+2 种基金the Natural Science Foundation of Henan Province(Grant No.232300420119)the Excellent Science and Technology Innovation Talent Support Program of ZUT(Grant No.K2023YXRC06)Funding for the Enhancement Program of Advantageous Discipline Strength of ZUT(2022)。
文摘Under investigation is an integrable generalization of the Fokas–Lenells equation, which can be derived from the negative power flow of a 2 × 2 matrix spectral problem with three potentials. Based on the gauge transformation of the matrix spectral problem, one kind of Darboux transformation with multi-parameters for the three-component coupled Fokas–Lenells system is constructed. As a reduction, the N-fold Darboux transformation for the generalized Fokas–Lenells equation is obtained, from which the N-soliton solution in a compact Vandermonde-like determinant form is given. Particularly,the explicit one-and two-soliton solutions are presented and their dynamical behaviors are shown graphically.
文摘We study the existence of solutions for Kirchhoff-type equations.Firstly,we use the Sobolev inequality and the weakly lower semi-continuity of the norm to prove that the corresponding function can reach the global minimum.Then,we use the variational method and some analytical techniques to obtain the existence of the positive solution of the equation whenλis small enough.
文摘We study exact solutions to (1 + 1)-dimensional generalized Boussinesq equation with time-space dispersion term by making use of improved sub-equation method, and analyse the dynamical behavior and exact solutions of the sub-equation after constructing the nonlinear transformation and constraint conditions. Accordingly, we obtain twenty families of exact solutions such as analytical and singular solitons and singular periodic waves. In addition, we discuss the impact of system parameters on wave propagation.
基金Supported by National Natural Science Foundation of China(Grant No.11971015).
文摘This paper studies the non-homogeneous generalized Riemann-Hilbert(RH)problems involving two unknown functions.Using the uniformization theorem,such problems are transformed into the case of homogeneous type.By the theory of classical boundary value problems,we adopt a novel method to obtain the sectionally analytic solutions of problems in strip domains,and analyze the conditions of solvability and properties of solutions in various domains.
基金Supported by Science and Technology Department of Sichuan Province,No.2020YFS0376National Natural Science Foundation of China,No.81900599Science and Technology Program of Hospital of TCM,Southwest Medical University,No.2022-CXTD-01.
文摘BACKGROUND Esophageal stricture ranks among the most significant complications following endoscopic submucosal dissection(ESD).Excessive fibrotic repair is a typical pathological feature leading to stenosis after ESD.AIM To examine the effectiveness and underlying mechanism of Kangfuxin solution(KFX)in mitigating excessive fibrotic repair of the esophagus post-ESD.METHODS Pigs received KFX at 0.74 mL/kg/d for 21 days after esophageal full circumferential ESD.Endoscopic examinations occurred on days 7 and 21 post-ESD.In vitro,recombinant transforming growth factor(TGF)-β1(5 ng/mL)induced a fibrotic microenvironment in primary esophageal fibroblasts(pEsF).After 24 hours of KFX treatment(at 1.5%,1%,and 0.5%),expression ofα-smooth muscle actin-2(ACTA2),fibronectin(FN),and type collagen I was assessed.Profibrotic signaling was analyzed,including TGF-β1,Smad2/3,and phosphor-smad2/3(p-Smad2/3).RESULTS Compared to the Control group,the groups treated with KFX and prednisolone exhibited reduced esophageal stenosis,lower weight loss rates,and improved food tolerance 21 d after ESD.After treatment,Masson staining revealed thinner and less dense collagen fibers in the submucosal layer.Additionally,the expression of fibrotic effector molecules was notably inhibited.Mechanistically,KFX downregulated the transduction levels of fibrotic functional molecules such as TGF-β1,Smad2/3,and p-Smad2/3.In vitro,pEsF exposed to TGF-β1-induced fibrotic microenvironment displayed increased fibrotic activity,which was reversed by KFX treatment,leading to reduced activation of ACTA2,FN,and collagen I.The 1.5%KFX treatment group showed decreased expression of p-Smad 2/3 in TGF-β1-activated pEsF.CONCLUSION KFX showed promise as a therapeutic option for post-full circumferential esophageal ESD strictures,potentially by suppressing fibroblast fibrotic activity through modulation of the TGF-β1/Smads signaling pathway.
文摘The existence of periodic solutions for a kind of generalized Liénard typed functional differential equation is studied. By means of the continuation theorem of coincidence degree theory, existence criteria are established for the existence of periodic solutions and some previous results are extended.
文摘Generally unitary solution to the system of martix equations over the quaternion field [X mA ns =B ns ,X nn C nt =D nt ] is considered. A necessary and sufficient condition for the existence of and the expression for the generally unitary solution of the system are derived.
文摘Using the Nevanlinna theory of the value distribution of meromorphic functions, we investigate the existence problem of admissible algebroid solutions of generalized complex algebraic differential equations and obtain some results.
文摘First, based on the basic equations of two-dimensional piezoelectroelasticity, a displacement function is introduced and the general solution is then derived. Utilizing the generalized Almansi's theorem, the general solution is so simplified that all physical quantities can be expressed by three 'harmonic functions'. Second, solutions of problems of a wedge loaded by point forces and point charge at the apex are also obtained in the paper. These solutions can be degenerated to those of problems of point forces and point charge acting on the line boundary of a piezoelectric half-plane.
基金supported by the National Natural Science Foundation of China(11102171)the Program for New Century Excellent Talents in University of Ministry of Education of China(NCET-13-0973)
文摘A general solution for 3D Stokes flow is given which is different from, and more compact than the exist ing ones and more compact than them in that it involves only two scalar harmonic functions. The general solution deduced is combined with the potential theory method to study the Stokes flow induced by a rigid plate of arbitrary shape trans lating along the direction normal to it in an unbounded fluid. The boundary integral equation governing this problem is derived. When the plate is elliptic, exact analytical results are obtained not only for the drag force but also for the ve locity distributions. These results include and complete the ones available for a circular plate. Numerical examples are provided to illustrate the main results for circular and ellip tic plates. In particular, the elliptic eccentricity of a plate is shown to exhibit significant influences.
基金supported by the National Natural Sci-ence Foundation of China(11172319)the Chinese Univer-sities Scientific Fund(2011JS046,2013BH008)+2 种基金the Opening Fund of State Key Laboratory of Nonlinear Mechanicsthe Program for New Century Excellent Talents in Univer-sity(NCET-13-0552)the National Science Foundation for Post-doctoral Scientists of China(2013M541086)
文摘The thermoelastic plane problems of two-dimensional decagonal quasicrystals(QCs)are systematically investigated.By introducing a displacement function,the problem of thermoelastic plane problems can be simplified to an eighth-order partial differential governing equation,and then general solutions are presented through an operator method.By virtue of the Almansi′s theorem,the general solutions are further established,and all expressions for the phonon,phason and thermal fields are described in terms of the potential functions.As an application of the general solution,for a steady point heat source in a semi-infinite quasicrystal plane,the closed form solutions are presented by four newly induced harmonic functions.
基金Supported by National Science and Technology Major Project of China(Grant No.2013ZX04003031)National Natural Science Foundation of China(Grant No.51575474)+1 种基金Hebei Provincial College Innovation Team Leader Training Program of China(Grant No.LJRC012)Hebei Provincial Natural Science Foundation of China(Grant No.E2015203223)
文摘The effect of kinematic hardening behavior on the shakedown behaviors of structure has been investigated by performing shakedown analysis for some specific problems. The results obtained only show that the shakedown limit loads of structures with kinematic hardening model are larger than or equal to those with perfectly plastic model of the same initial yield stress. To further investigate the rules governing the different shakedown behaviors of kinematic hardening structures, the extended shakedown theorem for limited kinematic hardening is applied, the shakedown condition is then proposed, and a general analytical solution for the structural shakedown limit load is thus derived. The analytical shakedown limit loads for fully reversed cyclic loading and non-fully reversed cyclic loading are then given based on the general solution. The resulting analytical solution is applied to some specific problems: a hollow specimen subjected to tension and torsion, a flanged pipe subjected to pressure and axial force and a square plate with small central hole subjected to biaxial tension. The results obtained are compared with those in literatures, they are consistent with each other. Based on the resulting general analytical solution, rules governing the general effects of kinematic hardening behavior on the shakedown behavior of structure are clearly.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11675084 and 11435005)the Fund from the Educational Commission of Zhejiang Province,China(Grant No.Y201737177)+1 种基金Ningbo Natural Science Foundation(Grant No.2015A610159)the K C Wong Magna Fund in Ningbo University
文摘In this manuscript,a reduced(3+1)-dimensional nonlinear evolution equation is studied.We first construct the bilinear formalism of the equation by using the binary Bell polynomials theory,then explore a lump solution to the special case for z=x.Furthermore,a more general form of lump solution of the equation is found which possesses seven arbitrary parameters and four constraint conditions.By cutting the lump by the induced soliton(s),lumpoff and instanton/rogue wave solutions are also constructed by the more general form of lump solution.
基金Supported by the Develop Programme Foundation of the National Basic research(G1 9990 3 2 80 1 )
文摘By asing the nonclassical method of symmetry reductions, the exact solutions for general variable coefficient KdV equation with dissipative loss and nonuniformity terms are obtained. When the dissipative loss and nonuniformity terms don't exist, the multisoliton solutions are found and the corresponding Painleve II type equation for the variable coefficient KdV equation is given.
基金This work was supported by the Chinese Outstanding Youth Foundation(No.69925308)Program for Changjiang Scholars and Innovative ResearchTeam in University.
文摘In this paper, solutions to the generalized Sylvester matrix equations AX -XF = BY and MXN -X = TY with A, M ∈ R^n×n, B, T ∈ Rn×r, F, N ∈ R^p×p and the matrices N, F being in companion form, are established by a singular value decomposition of a matrix with dimensions n × (n + pr). The algorithm proposed in this paper for the euqation AX - XF = BY does not require the controllability of matrix pair (A, B) and the restriction that A, F do not have common eigenvalues. Since singular value decomposition is adopted, the algorithm is numerically stable and may provide great convenience to the computation of the solution to these equations, and can perform important functions in many design problems in control systems theory.
基金Project (No. 20051899) supported by Office of Education of Zheji-ang Province, China
文摘Objective: To investigate the dynamics of vascular volume and the plasma dilution of lactated Ringer's solution in patients during the induction of general and epidural anesthesia. Methods: The hemodilution of i.v. infusion of 1000 ml of lactated Ringer's solution over 60 min was studied in patients undergoing general (n=31) and epidural (n= 22) anesthesia. Heart rate, arterial blood pressure and hemoglobin (Hb) concentration were measured every 5 rain during the study. Surgery was not started until the study period had been completed. Results: General anesthesia caused the greater decrease of mean arterial blood pressure (MAP) (mean 15% versus 9%; P〈0.01) and thereby followed by a more pronounced plasma dilution, blood volume expansion (VE) and blood volume expansion efficiency (VEE). A strong linear correlation between hemodilution and the reduction in MAP (r=-0.50;P〈0.01) was found. At the end of infusion, patients undergoing general anesthesia retained 47% (SD 19%) of the infused fluid in the circulation, while epidural anesthesia retained 29% (SD 13%) (P〈0.001). Correspondingly, a fewer urine output (mean 89 ml versus 156 ml; P〈0.05) and extravascular expansion (454 ml versus 551 ml; P〈0.05) were found during general anesthesia. Conclusion: We concluded that the induction of general anesthesia caused more hemodilution, volume expansion and volume expansion efficiency than epidural anesthesia, which was triggered only by the lower MAP.
文摘The authors of this article are interested in characterization of efficient solutions for special classes of problems. These classes consider semi-strong E-convexity of involved functions. Sufficient and necessary conditions for a feasible solution to be an efficient or properly efficient solution are obtained.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10932009 and 11172233)the Northwestern Polytechnical University Foundation for Fundamental Research, China (Grant No. GBKY1034)the State Administration of Foreign Experts Affairs of China, and the Chunhui Plan of the Ministry of Education of China
文摘Based on the Grammian and Pfaffian derivative formulae, Grammian and Pfaffian solutions are obtained for a (3+1)-dimensional generalized shallow water equation in the Hirota bilinear form. Moreover, a Pfaffian extension is made for the equation by means of the Pfaffianization procedure, the Wronski-type and Gramm-type Pfaffian solutions of the resulting coupled system are presented.