Exact analytical solution for flows of an electrically conducting fluid over an infinite oscillatory disk in the presence of a uniform transverse magnetic field is constructed. Both the disk and the fluid are in a sta...Exact analytical solution for flows of an electrically conducting fluid over an infinite oscillatory disk in the presence of a uniform transverse magnetic field is constructed. Both the disk and the fluid are in a state of non-coaxial rotation. Such a flow model has a great significance not only due to its own theoretical interest, but also due to applications to geophysics and engineering. The resulting initial value problem has been solved analytically by applying the Laplace transform technique and the explicit expressions for the velocity for steady and unsteady cases have been established. The analysis of the obtained results shows that the flow field is appreciably influenced by the applied magnetic field, the frequency and rotation parameters.展开更多
In this paper, we prove the existence and uniqueness of positive periodic solutions for first-order functional differential equation y'(t) = α(t)y(t) + f(t, y(t -τ-(t))) + g(t)by using two fixed poi...In this paper, we prove the existence and uniqueness of positive periodic solutions for first-order functional differential equation y'(t) = α(t)y(t) + f(t, y(t -τ-(t))) + g(t)by using two fixed point theorems of general α-concave operators and homogeneous operators in ordered Banach spaces.展开更多
文摘Exact analytical solution for flows of an electrically conducting fluid over an infinite oscillatory disk in the presence of a uniform transverse magnetic field is constructed. Both the disk and the fluid are in a state of non-coaxial rotation. Such a flow model has a great significance not only due to its own theoretical interest, but also due to applications to geophysics and engineering. The resulting initial value problem has been solved analytically by applying the Laplace transform technique and the explicit expressions for the velocity for steady and unsteady cases have been established. The analysis of the obtained results shows that the flow field is appreciably influenced by the applied magnetic field, the frequency and rotation parameters.
基金Supported by the Youth Science Foundation of China(l1201272) Supported by the Youth Science Foundatioa of Shanxi Province(2010021002-1)
文摘In this paper, we prove the existence and uniqueness of positive periodic solutions for first-order functional differential equation y'(t) = α(t)y(t) + f(t, y(t -τ-(t))) + g(t)by using two fixed point theorems of general α-concave operators and homogeneous operators in ordered Banach spaces.