In this paper, based on the theory of Donnell-type shallow shell, a new displacement-type stability equations is first developed for laminated composite circular conical shells with triangular grid stiffeners by using...In this paper, based on the theory of Donnell-type shallow shell, a new displacement-type stability equations is first developed for laminated composite circular conical shells with triangular grid stiffeners by using the variational calculus and generalized smeared-stiffener theory. The most general bending stretching couplings, the effect of eccentricity of stiffeners are considered. Then, for general stability of composite triangular grid stiffened conical shells without twist coupling terms, the approximate formulas are obtained for critical external pressure by using Galerkin's procedure. Numerical examples for a certain C/E composite conical shells with inside triangular grid stiffeners are calculated and the results are in good agreement with the experimental data. Finally, the influence of some parameters on critical external pressure is studied. The stability equations developed and the formulas for critical external pressure obtained in this paper should be very useful in the astronautical engineering design.展开更多
In this paper, we investigate the absolute stability of the general Lurie control systems. The necessary and sufficient conditions for absolute stability are obtained. These conditions can be readily checked and are c...In this paper, we investigate the absolute stability of the general Lurie control systems. The necessary and sufficient conditions for absolute stability are obtained. These conditions can be readily checked and are convenient in application.展开更多
Discrete feedback control was designed to stabilize an unstable hybrid neutral stochastic differential delay system(HNSDDS) under a highly nonlinear constraint in the H_∞ and exponential forms.Nevertheless,the existi...Discrete feedback control was designed to stabilize an unstable hybrid neutral stochastic differential delay system(HNSDDS) under a highly nonlinear constraint in the H_∞ and exponential forms.Nevertheless,the existing work just adapted to autonomous cases,and the obtained results were mainly on exponential stabilization.In comparison with autonomous cases,non-autonomous systems are of great interest and represent an important challenge.Accordingly,discrete feedback control has here been adjusted with a time factor to stabilize an unstable non-autonomous HNSDDS,in which new Lyapunov-Krasovskii functionals and some novel technologies are adopted.It should be noted,in particular,that the stabilization can be achieved not only in the routine H_∞ and exponential forms,but also the polynomial form and even a general form.展开更多
In order to solve the problems of weak prediction stability and generalization ability of a neural network algorithm model in the yarn quality prediction research for small samples,a prediction model based on an AdaBo...In order to solve the problems of weak prediction stability and generalization ability of a neural network algorithm model in the yarn quality prediction research for small samples,a prediction model based on an AdaBoost algorithm(AdaBoost model) was established.A prediction model based on a linear regression algorithm(LR model) and a prediction model based on a multi-layer perceptron neural network algorithm(MLP model) were established for comparison.The prediction experiments of the yarn evenness and the yarn strength were implemented.Determination coefficients and prediction errors were used to evaluate the prediction accuracy of these models,and the K-fold cross validation was used to evaluate the generalization ability of these models.In the prediction experiments,the determination coefficient of the yarn evenness prediction result of the AdaBoost model is 76% and 87% higher than that of the LR model and the MLP model,respectively.The determination coefficient of the yarn strength prediction result of the AdaBoost model is slightly higher than that of the other two models.Considering that the yarn evenness dataset has a weaker linear relationship with the cotton dataset than that of the yarn strength dataset in this paper,the AdaBoost model has the best adaptability for the nonlinear dataset among the three models.In addition,the AdaBoost model shows generally better results in the cross-validation experiments and the series of prediction experiments at eight different training set sample sizes.It is proved that the AdaBoost model not only has good prediction accuracy but also has good prediction stability and generalization ability for small samples.展开更多
In the literature (Tan and Wang, 2010), Tan and Wang investigated the convergence of the split-step backward Euler (SSBE) method for linear stochastic delay integro-differential equations (SDIDEs) and proved the...In the literature (Tan and Wang, 2010), Tan and Wang investigated the convergence of the split-step backward Euler (SSBE) method for linear stochastic delay integro-differential equations (SDIDEs) and proved the mean-square stability of SSBE method under some condition. Unfortu- nately, the main result of stability derived by the condition is somewhat restrictive to be applied for practical application. This paper improves the corresponding results. The authors not only prove the mean-square stability of the numerical method but also prove the general mean-square stability of the numerical method. Furthermore, an example is given to illustrate the theory.展开更多
基金The Project supported by the Doctoral Research Foundation of the State Education Commission of China
文摘In this paper, based on the theory of Donnell-type shallow shell, a new displacement-type stability equations is first developed for laminated composite circular conical shells with triangular grid stiffeners by using the variational calculus and generalized smeared-stiffener theory. The most general bending stretching couplings, the effect of eccentricity of stiffeners are considered. Then, for general stability of composite triangular grid stiffened conical shells without twist coupling terms, the approximate formulas are obtained for critical external pressure by using Galerkin's procedure. Numerical examples for a certain C/E composite conical shells with inside triangular grid stiffeners are calculated and the results are in good agreement with the experimental data. Finally, the influence of some parameters on critical external pressure is studied. The stability equations developed and the formulas for critical external pressure obtained in this paper should be very useful in the astronautical engineering design.
基金Project supported by the National Natural Science Foundation of China.
文摘In this paper, we investigate the absolute stability of the general Lurie control systems. The necessary and sufficient conditions for absolute stability are obtained. These conditions can be readily checked and are convenient in application.
基金supported by the National Natural Science Foundation of China(61833005)the Humanities and Social Science Fund of Ministry of Education of China(23YJAZH031)+1 种基金the Natural Science Foundation of Hebei Province of China(A2023209002,A2019209005)the Tangshan Science and Technology Bureau Program of Hebei Province of China(19130222g)。
文摘Discrete feedback control was designed to stabilize an unstable hybrid neutral stochastic differential delay system(HNSDDS) under a highly nonlinear constraint in the H_∞ and exponential forms.Nevertheless,the existing work just adapted to autonomous cases,and the obtained results were mainly on exponential stabilization.In comparison with autonomous cases,non-autonomous systems are of great interest and represent an important challenge.Accordingly,discrete feedback control has here been adjusted with a time factor to stabilize an unstable non-autonomous HNSDDS,in which new Lyapunov-Krasovskii functionals and some novel technologies are adopted.It should be noted,in particular,that the stabilization can be achieved not only in the routine H_∞ and exponential forms,but also the polynomial form and even a general form.
文摘In order to solve the problems of weak prediction stability and generalization ability of a neural network algorithm model in the yarn quality prediction research for small samples,a prediction model based on an AdaBoost algorithm(AdaBoost model) was established.A prediction model based on a linear regression algorithm(LR model) and a prediction model based on a multi-layer perceptron neural network algorithm(MLP model) were established for comparison.The prediction experiments of the yarn evenness and the yarn strength were implemented.Determination coefficients and prediction errors were used to evaluate the prediction accuracy of these models,and the K-fold cross validation was used to evaluate the generalization ability of these models.In the prediction experiments,the determination coefficient of the yarn evenness prediction result of the AdaBoost model is 76% and 87% higher than that of the LR model and the MLP model,respectively.The determination coefficient of the yarn strength prediction result of the AdaBoost model is slightly higher than that of the other two models.Considering that the yarn evenness dataset has a weaker linear relationship with the cotton dataset than that of the yarn strength dataset in this paper,the AdaBoost model has the best adaptability for the nonlinear dataset among the three models.In addition,the AdaBoost model shows generally better results in the cross-validation experiments and the series of prediction experiments at eight different training set sample sizes.It is proved that the AdaBoost model not only has good prediction accuracy but also has good prediction stability and generalization ability for small samples.
基金supported by the Fundamental Research Funds for the Central Universities under Grant No. 2012089:31541111213China Postdoctoral Science Foundation Funded Project under Grant No.2012M511615the State Key Program of National Natural Science of China under Grant No.61134012
文摘In the literature (Tan and Wang, 2010), Tan and Wang investigated the convergence of the split-step backward Euler (SSBE) method for linear stochastic delay integro-differential equations (SDIDEs) and proved the mean-square stability of SSBE method under some condition. Unfortu- nately, the main result of stability derived by the condition is somewhat restrictive to be applied for practical application. This paper improves the corresponding results. The authors not only prove the mean-square stability of the numerical method but also prove the general mean-square stability of the numerical method. Furthermore, an example is given to illustrate the theory.