When the distribution of the sources cannot be estimated accurately, the ICA algorithms failed to separate the mixtures blindly. The generalized Gaussian model (GGM) is presented in ICA algorithm since it can model ...When the distribution of the sources cannot be estimated accurately, the ICA algorithms failed to separate the mixtures blindly. The generalized Gaussian model (GGM) is presented in ICA algorithm since it can model non- Ganssian statistical structure of different source signals easily. By inferring only one parameter, a wide class of statistical distributions can be characterized. By using maximum likelihood (ML) approach and natural gradient descent, the learning rules of blind source separation (BSS) based on GGM are presented. The experiment of the ship-radiated noise demonstrates that the GGM can model the distributions of the ship-radiated noise and sea noise efficiently, and the learning rules based on GGM gives more successful separation results after comparing it with several conventional methods such as high order cumnlants and Gaussian mixture density function.展开更多
Since in most blind source separation(BSS)algorithms the estimations of probability density function(pdf)of sources are fixed or can only switch between one sup-Gaussian and other sub-Gaussian model,they may not be ef...Since in most blind source separation(BSS)algorithms the estimations of probability density function(pdf)of sources are fixed or can only switch between one sup-Gaussian and other sub-Gaussian model,they may not be efficient to separate sources with different distributions.So to solve the problem of pdf mismatch and the separation of hybrid mixture in BSS,the generalized Gaussian model(GGM)is introduced to model the pdf of the sources since it can provide a general structure of univariate distributions.Its great advantage is that only one parameter needs to be determined in modeling the pdf of different sources,so it is less complex than Gaussian mixture model.By using maximum likelihood(ML)approach,the convergence of the proposed algorithm is improved.The computer simulations show that it is more efficient and valid than conventional methods with fixed pdf estimation.展开更多
Under the underdetermined blind sources separation(UBSS) circumstance,it is difficult to estimate the mixing matrix with high-precision because of unknown sparsity of signals.The mixing matrix estimation is proposed b...Under the underdetermined blind sources separation(UBSS) circumstance,it is difficult to estimate the mixing matrix with high-precision because of unknown sparsity of signals.The mixing matrix estimation is proposed based on linear aggregation degree of signal scatter plot without knowing sparsity,and the linear aggregation degree evaluation of observed signals is presented which obeys generalized Gaussian distribution(GGD).Both the GGD shape parameter and the signals' correlation features affect the observation signals sparsity and further affected the directionality of time-frequency scatter plot.So a new mixing matrix estimation method is proposed for different sparsity degrees,which especially focuses on unclear directionality of scatter plot and weak linear aggregation degree.Firstly,the direction of coefficient scatter plot by time-frequency transform is improved and then the single source coefficients in the case of weak linear clustering is processed finally the improved K-means clustering is applied to achieve the estimation of mixing matrix.The proposed algorithm reduces the requirements of signals sparsity and independence,and the mixing matrix can be estimated with high accuracy.The simulation results show the feasibility and effectiveness of the algorithm.展开更多
文摘When the distribution of the sources cannot be estimated accurately, the ICA algorithms failed to separate the mixtures blindly. The generalized Gaussian model (GGM) is presented in ICA algorithm since it can model non- Ganssian statistical structure of different source signals easily. By inferring only one parameter, a wide class of statistical distributions can be characterized. By using maximum likelihood (ML) approach and natural gradient descent, the learning rules of blind source separation (BSS) based on GGM are presented. The experiment of the ship-radiated noise demonstrates that the GGM can model the distributions of the ship-radiated noise and sea noise efficiently, and the learning rules based on GGM gives more successful separation results after comparing it with several conventional methods such as high order cumnlants and Gaussian mixture density function.
文摘Since in most blind source separation(BSS)algorithms the estimations of probability density function(pdf)of sources are fixed or can only switch between one sup-Gaussian and other sub-Gaussian model,they may not be efficient to separate sources with different distributions.So to solve the problem of pdf mismatch and the separation of hybrid mixture in BSS,the generalized Gaussian model(GGM)is introduced to model the pdf of the sources since it can provide a general structure of univariate distributions.Its great advantage is that only one parameter needs to be determined in modeling the pdf of different sources,so it is less complex than Gaussian mixture model.By using maximum likelihood(ML)approach,the convergence of the proposed algorithm is improved.The computer simulations show that it is more efficient and valid than conventional methods with fixed pdf estimation.
基金Supported by the National Natural Science Foundation of China(No.51204145)Natural Science Foundation of Hebei Province of China(No.2013203300)
文摘Under the underdetermined blind sources separation(UBSS) circumstance,it is difficult to estimate the mixing matrix with high-precision because of unknown sparsity of signals.The mixing matrix estimation is proposed based on linear aggregation degree of signal scatter plot without knowing sparsity,and the linear aggregation degree evaluation of observed signals is presented which obeys generalized Gaussian distribution(GGD).Both the GGD shape parameter and the signals' correlation features affect the observation signals sparsity and further affected the directionality of time-frequency scatter plot.So a new mixing matrix estimation method is proposed for different sparsity degrees,which especially focuses on unclear directionality of scatter plot and weak linear aggregation degree.Firstly,the direction of coefficient scatter plot by time-frequency transform is improved and then the single source coefficients in the case of weak linear clustering is processed finally the improved K-means clustering is applied to achieve the estimation of mixing matrix.The proposed algorithm reduces the requirements of signals sparsity and independence,and the mixing matrix can be estimated with high accuracy.The simulation results show the feasibility and effectiveness of the algorithm.