In the present paper, we derive some third-order differential subordination results for analytic functions in the open unit disk, using the operator Bcκf by means of normalized form of the generalized Bessel function...In the present paper, we derive some third-order differential subordination results for analytic functions in the open unit disk, using the operator Bcκf by means of normalized form of the generalized Bessel functions of the first kind, which is defined as z(Bκ+1^c f(z))′= κBκ^c f(z)-(κ- 1)Bκ+1^c f(z),where b, c, p ∈ C and κ = p +(b + 1)/2 ∈ C / Z0^-(Z0^-= {0,-1,-2, … }). The results are obtained by considering suitable classes of admissible functions. Various known or new special cases of our main results are also pointed out.展开更多
基金partly supported by the Natural Science Foundation of China(11271045)the Higher School Doctoral Foundation of China(20100003110004)+2 种基金the Natural Science Foundation of Inner Mongolia of China(2010MS0117)athe Higher School Foundation of Inner Mongolia of China(NJZY13298)the Commission for the Scientific Research Projects of Kafkas Univertsity(2012-FEF-30)
文摘In the present paper, we derive some third-order differential subordination results for analytic functions in the open unit disk, using the operator Bcκf by means of normalized form of the generalized Bessel functions of the first kind, which is defined as z(Bκ+1^c f(z))′= κBκ^c f(z)-(κ- 1)Bκ+1^c f(z),where b, c, p ∈ C and κ = p +(b + 1)/2 ∈ C / Z0^-(Z0^-= {0,-1,-2, … }). The results are obtained by considering suitable classes of admissible functions. Various known or new special cases of our main results are also pointed out.