Several equivalent statements of generalized subconvexlike set-valued map are established in ordered linear spaces. Using vector closure, we introduce Benson proper efficient solution of vector optimization problem. U...Several equivalent statements of generalized subconvexlike set-valued map are established in ordered linear spaces. Using vector closure, we introduce Benson proper efficient solution of vector optimization problem. Under the assumption of generalized subconvexlikeness, scalarization, multiplier and saddle point theorems are obtained in the sense of Benson proper efficiency.展开更多
This note studies the optimality conditions of vector optimization problems involving generalized convexity in locally convex spaces. Based upon the concept of Dini set-valued directional derivatives, the necessary an...This note studies the optimality conditions of vector optimization problems involving generalized convexity in locally convex spaces. Based upon the concept of Dini set-valued directional derivatives, the necessary and sufficient optimality conditions are established for Henig proper and strong minimal solutions respectively in generalized preinvex vector optimization problems.展开更多
Applying the theory of locally convex spaces to vector optimization, we investigate the relationship between Henig proper efficient points and generalized Henig proper efficient points. In particular, we obtain a suff...Applying the theory of locally convex spaces to vector optimization, we investigate the relationship between Henig proper efficient points and generalized Henig proper efficient points. In particular, we obtain a sufficient and necessary condition for generalized Henig proper efficient points to be Henig proper efficient points. From this, we derive several convenient criteria for judging Henig proper efficient points.展开更多
文摘Several equivalent statements of generalized subconvexlike set-valued map are established in ordered linear spaces. Using vector closure, we introduce Benson proper efficient solution of vector optimization problem. Under the assumption of generalized subconvexlikeness, scalarization, multiplier and saddle point theorems are obtained in the sense of Benson proper efficiency.
文摘This note studies the optimality conditions of vector optimization problems involving generalized convexity in locally convex spaces. Based upon the concept of Dini set-valued directional derivatives, the necessary and sufficient optimality conditions are established for Henig proper and strong minimal solutions respectively in generalized preinvex vector optimization problems.
基金Supported by the National Natural Science Foundation of China (10571035, 10871141)
文摘Applying the theory of locally convex spaces to vector optimization, we investigate the relationship between Henig proper efficient points and generalized Henig proper efficient points. In particular, we obtain a sufficient and necessary condition for generalized Henig proper efficient points to be Henig proper efficient points. From this, we derive several convenient criteria for judging Henig proper efficient points.