This article introduces a novel variant of the generalized linear exponential(GLE)distribution,known as the sine generalized linear exponential(SGLE)distribution.The SGLE distribution utilizes the sine transformation ...This article introduces a novel variant of the generalized linear exponential(GLE)distribution,known as the sine generalized linear exponential(SGLE)distribution.The SGLE distribution utilizes the sine transformation to enhance its capabilities.The updated distribution is very adaptable and may be efficiently used in the modeling of survival data and dependability issues.The suggested model incorporates a hazard rate function(HRF)that may display a rising,J-shaped,or bathtub form,depending on its unique characteristics.This model includes many well-known lifespan distributions as separate sub-models.The suggested model is accompanied with a range of statistical features.The model parameters are examined using the techniques of maximum likelihood and Bayesian estimation using progressively censored data.In order to evaluate the effectiveness of these techniques,we provide a set of simulated data for testing purposes.The relevance of the newly presented model is shown via two real-world dataset applications,highlighting its superiority over other respected similar models.展开更多
Various models have been proposed in the literature to study non-negative integer-valued time series. In this paper, we study estimators for the generalized Poisson autoregressive process of order 1, a model developed...Various models have been proposed in the literature to study non-negative integer-valued time series. In this paper, we study estimators for the generalized Poisson autoregressive process of order 1, a model developed by Alzaid and Al-Osh [1]. We compare three estimation methods, the methods of moments, quasi-likelihood and conditional maximum likelihood and study their asymptotic properties. To compare the bias of the estimators in small samples, we perform a simulation study for various parameter values. Using the theory of estimating equations, we obtain expressions for the variance-covariance matrices of those three estimators, and we compare their asymptotic efficiency. Finally, we apply the methods derived in the paper to a real time series.展开更多
Statistical analysis of lifetime data is a significant topic in social sciences, engineering, reliability, biomedical and others. We use the generalized weighted exponential distribution, as a generator to introduce a...Statistical analysis of lifetime data is a significant topic in social sciences, engineering, reliability, biomedical and others. We use the generalized weighted exponential distribution, as a generator to introduce a new family called generalized weighted exponential-G family, and apply this new generator to provide a new distribution called generalized weighted exponential gombertez distribution. We investigate some of its properties, moment generating function, moments, conditional moments, mean residual lifetime, mean inactivity time, strong mean inactivity time, Rényi entropy, Lorenz curves and Bonferroni. Furthermore, in this model, we estimate the parameters by using maximum likelihood method. We apply this model to a real data-set to show that the new generated distribution can produce a better fit than other classical lifetime models.展开更多
In this paper, a new two-parameter distribution called generalized power<span style="font-family:Verdana;"> Akshaya distribution extended from Akshaya distribution is introduced. This distribution is p...In this paper, a new two-parameter distribution called generalized power<span style="font-family:Verdana;"> Akshaya distribution extended from Akshaya distribution is introduced. This distribution is proposed to model lifetime data. Statistical properties like density, hazard, survival and moments are derived. Two parameters estimation is introduced using maximum likelihood and Bayesian techniques. Finally, an application of real data and a simulation study are introduced to illustrate the usefulness of the proposed distribution.</span>展开更多
We used simulated data to investigate both the small and large sample properties of the within-groups (WG) estimator and the first difference generalized method of moments (FD-GMM) estimator of a dynamic panel data (D...We used simulated data to investigate both the small and large sample properties of the within-groups (WG) estimator and the first difference generalized method of moments (FD-GMM) estimator of a dynamic panel data (DPD) model. The magnitude of WG and FD-GMM estimates are almost the same for square panels. WG estimator performs best for long panels such as those with time dimension as large as 50. The advantage of FD-GMM estimator however, is observed on panels that are long and wide, say with time dimension at least 25 and cross-section dimension size of at least 30. For small-sized panels, the two methods failed since their optimality was established in the context of asymptotic theory. We developed parametric bootstrap versions of WG and FD-GMM estimators. Simulation study indicates the advantages of the bootstrap methods under small sample cases on the assumption that variances of the individual effects and the disturbances are of similar magnitude. The boostrapped WG and FD-GMM estimators are optimal for small samples.展开更多
基金This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(Grant Number IMSIU-RG23142).
文摘This article introduces a novel variant of the generalized linear exponential(GLE)distribution,known as the sine generalized linear exponential(SGLE)distribution.The SGLE distribution utilizes the sine transformation to enhance its capabilities.The updated distribution is very adaptable and may be efficiently used in the modeling of survival data and dependability issues.The suggested model incorporates a hazard rate function(HRF)that may display a rising,J-shaped,or bathtub form,depending on its unique characteristics.This model includes many well-known lifespan distributions as separate sub-models.The suggested model is accompanied with a range of statistical features.The model parameters are examined using the techniques of maximum likelihood and Bayesian estimation using progressively censored data.In order to evaluate the effectiveness of these techniques,we provide a set of simulated data for testing purposes.The relevance of the newly presented model is shown via two real-world dataset applications,highlighting its superiority over other respected similar models.
文摘Various models have been proposed in the literature to study non-negative integer-valued time series. In this paper, we study estimators for the generalized Poisson autoregressive process of order 1, a model developed by Alzaid and Al-Osh [1]. We compare three estimation methods, the methods of moments, quasi-likelihood and conditional maximum likelihood and study their asymptotic properties. To compare the bias of the estimators in small samples, we perform a simulation study for various parameter values. Using the theory of estimating equations, we obtain expressions for the variance-covariance matrices of those three estimators, and we compare their asymptotic efficiency. Finally, we apply the methods derived in the paper to a real time series.
文摘Statistical analysis of lifetime data is a significant topic in social sciences, engineering, reliability, biomedical and others. We use the generalized weighted exponential distribution, as a generator to introduce a new family called generalized weighted exponential-G family, and apply this new generator to provide a new distribution called generalized weighted exponential gombertez distribution. We investigate some of its properties, moment generating function, moments, conditional moments, mean residual lifetime, mean inactivity time, strong mean inactivity time, Rényi entropy, Lorenz curves and Bonferroni. Furthermore, in this model, we estimate the parameters by using maximum likelihood method. We apply this model to a real data-set to show that the new generated distribution can produce a better fit than other classical lifetime models.
文摘In this paper, a new two-parameter distribution called generalized power<span style="font-family:Verdana;"> Akshaya distribution extended from Akshaya distribution is introduced. This distribution is proposed to model lifetime data. Statistical properties like density, hazard, survival and moments are derived. Two parameters estimation is introduced using maximum likelihood and Bayesian techniques. Finally, an application of real data and a simulation study are introduced to illustrate the usefulness of the proposed distribution.</span>
文摘We used simulated data to investigate both the small and large sample properties of the within-groups (WG) estimator and the first difference generalized method of moments (FD-GMM) estimator of a dynamic panel data (DPD) model. The magnitude of WG and FD-GMM estimates are almost the same for square panels. WG estimator performs best for long panels such as those with time dimension as large as 50. The advantage of FD-GMM estimator however, is observed on panels that are long and wide, say with time dimension at least 25 and cross-section dimension size of at least 30. For small-sized panels, the two methods failed since their optimality was established in the context of asymptotic theory. We developed parametric bootstrap versions of WG and FD-GMM estimators. Simulation study indicates the advantages of the bootstrap methods under small sample cases on the assumption that variances of the individual effects and the disturbances are of similar magnitude. The boostrapped WG and FD-GMM estimators are optimal for small samples.