This paper deals with the solution of a parametric equation with generalized boundary condiiton in transport theory. It gives the distribution of parameter (so called delta-eigenvalue [1]) with which the equation has ...This paper deals with the solution of a parametric equation with generalized boundary condiiton in transport theory. It gives the distribution of parameter (so called delta-eigenvalue [1]) with which the equation has non-zero solution. A necessary and sufficient condition for the existence of; he control critical eigenvalue delta0 is established.展开更多
Generalized impedance boundary conditions are employed to simplify the solution of the Sommerfeld half-space problem. An analytical expression is derived for the Hertz potential of a vertical electric dipole over the ...Generalized impedance boundary conditions are employed to simplify the solution of the Sommerfeld half-space problem. An analytical expression is derived for the Hertz potential of a vertical electric dipole over the earth’s surface, in which the earth is assumed to be a layered media or homogeneous dissipative half-space. A Sommerfeld type integral in the potential function is expressed as the sum of two parts: a zeroth order Hankel function and an absolutely convergent series of Bessel functions. In addition, two expressions in closed form are obtained as the far-field and near-field approximation of the present result.展开更多
In this paper the concepts of the boundary value problem of abstract kinetic equation with the first kind of critical parameter γ 0 and generalized periodic boundary conditions are introduced in a Lebesgue space whic...In this paper the concepts of the boundary value problem of abstract kinetic equation with the first kind of critical parameter γ 0 and generalized periodic boundary conditions are introduced in a Lebesgue space which consists of functions with vector valued in a general Banach space, and then describe the solution of these abstract boundary value problem by the abstract linear integral operator of Volterra type. We call this process the integral operator solving process.展开更多
This study deals with the stagnation point flow of ferrofluid over a flat plate with non-linear slip boundary condition in the presence of homogeneous-heterogeneous reactions.Three kinds of ferroparticles,namely,magne...This study deals with the stagnation point flow of ferrofluid over a flat plate with non-linear slip boundary condition in the presence of homogeneous-heterogeneous reactions.Three kinds of ferroparticles,namely,magnetite(Fe_3O_4),cobalt ferrite(CoFe_2O_4) and manganese zinc ferrite(Mn-ZnFe_2O_4) are taken into account with water and kerosene as conventional base fluids.The developed model of homogeneous-heterogeneous reactions in boundary layer flow with equal and unequal diffusivities for reactant and autocatalysis is considered.The governing partial differential equations are converted into system of non-linear ordinary differential equations by mean of similarity transformations.These ordinary differential equations are integrated numerically using shooting method.The effects of pertinent parameters on velocity and concentration profiles are presented graphically and discussed.We found that in the presence of Fe_3O_4-kerosene and CoFe_2O_4-kerosene,velocity profiles increase for large values of α and β whereas there is a decrement in concentration profiles with increasing values of if and K_s.Furthermore,the comparison between non-magnetic(A1_2O_3) and magnetic Fe_3O_4 nanoparticles is given in tabular form.展开更多
In this paper,we focus on the immiscible compressible two-phase flow described by the coupled compressible Navier-Stokes system and the modified Allen-Cahn equations.The generalized Navier boundary condition and the r...In this paper,we focus on the immiscible compressible two-phase flow described by the coupled compressible Navier-Stokes system and the modified Allen-Cahn equations.The generalized Navier boundary condition and the relaxation boundary condition are established in order to solve the problem of moving contact lines on the solid boundary by using the principle of minimum energy dissipation.The existence and uniqueness for local strong solution in three dimensional bounded domain for this type of boundary value problem is obtained by the elementary energy method and the maximum principle.展开更多
In this paper,the temperature distribution in the multi-layer of the skin is studied when the skin surface is subjected to most generalized boundary condition.Our skin model consists of three layers known as the epide...In this paper,the temperature distribution in the multi-layer of the skin is studied when the skin surface is subjected to most generalized boundary condition.Our skin model consists of three layers known as the epidermis,dermis,and subcutaneous layers.All layers of skin are assumed to be connected with point of interface condition and taking the barrier in between each of the two layers by symmetric flux condition and analyzing each layer separately.The classical Fourier and non-Fourier(DPL)models are extended to analyze the behavior of heat transfer in the multi-layer of the skin.The Laplace transform technique is used to derive analytical solutions for the multi-layer of skin models.The effects of the variability of different parameters such as relaxation time,layer thickness,and different types of boundary conditions on the behavior of temperature distribution in the multi-layer of skin are analyzed and discussed in detail.All the effects are shown graphically.It has been observed that during temperature distribution in the multi-layer of skin,the measurement of skin damage is less on the DPL model(rq>Tt)in comparison to the classical Fourier model.展开更多
Estimates of the type L1-L∞ for the Schrödinger Equation on the Line and on Half-Line with a regular potential V(x), express the dispersive nature of the Schrödinger Equation and are the essential e...Estimates of the type L1-L∞ for the Schrödinger Equation on the Line and on Half-Line with a regular potential V(x), express the dispersive nature of the Schrödinger Equation and are the essential elements in the study of the problems of initial values, the asymptotic times for large solutions and Scattering Theory for the Schrödinger equation and non-linear in general;for other equations of Non-linear Evolution. In general, the estimates Lp-Lp' express the dispersive nature of this equation. And its study plays an important role in problems of non-linear initial values;likewise, in the study of problems nonlinear initial values;see [1] [2] [3]. On the other hand, following a series of problems proposed by V. Marchenko [4], that we will name Marchenko’s formulation, and relate it to a generalized version of Theorem 1 given in [1], the main theorem (Theorem 1) of this article provides a transformation operator W?that transforms the Reduced Radial Schrödinger Equation (RRSE) (whose main characteristic is the addition a singular term of quadratic order to a regular potential V(x)) in the Schrödinger Equation on Half-Line (RSEHL) under W. That is to say;W?eliminates the singular term of quadratic order of potential V(x) in the asymptotic development towards zero and adds to the potential V(x) a bounded term and a term exponentially decrease fast enough in the asymptotic development towards infinity, which continues guaranteeing the uniqueness of the potential V(x) in the condition of the infinity boundary. Then the L1-L∞ estimates for the (RRSE) are preserved under the transformation operator , as in the case of (RSEHL) where they were established in [3]. Finally, as an open question, the possibility of extending the L1-L∞ estimates for the case (RSEHL), where added to the potential V(x) an analytical perturbation is mentioned.展开更多
In this paper,an efficient numerical method for solving the general fractional diffusion equations with Riesz fractional derivative is proposed by combining the fractional compact difference operator and the boundary ...In this paper,an efficient numerical method for solving the general fractional diffusion equations with Riesz fractional derivative is proposed by combining the fractional compact difference operator and the boundary value methods.In order to efficiently solve the generated linear large-scale system,the generalized minimal residual(GMRES)algorithm is applied.For accelerating the convergence rate of the it erative,the St rang-type,Chantype and P-type preconditioners are introduced.The suggested met hod can reach higher order accuracy both in space and in time than the existing met hods.When the used boundary value method is Ak1,K2-stable,it is proven that Strang-type preconditioner is invertible and the spectra of preconditioned matrix is clustered around 1.It implies that the iterative solution is convergent rapidly.Numerical experiments with the absorbing boundary condition and the generalized Dirichlet type further verify the efficiency.展开更多
In this paper,we compute a phase field(diffuse interface)model of CahnHilliard type for moving contact line problems governing the motion of isothermal multiphase incompressible fluids.The generalized Navier boundary ...In this paper,we compute a phase field(diffuse interface)model of CahnHilliard type for moving contact line problems governing the motion of isothermal multiphase incompressible fluids.The generalized Navier boundary condition proposed by Qian et al.[1]is adopted here.We discretize model equations using a continuous finite element method in space and a modified midpoint scheme in time.We apply a penalty formulation to the continuity equation which may increase the stability in the pressure variable.Two kinds of immiscible fluids in a pipe and droplet displacement with a moving contact line under the effect of pressure driven shear flow are studied using a relatively coarse grid.We also derive the discrete energy law for the droplet displacement case,which is slightly different due to the boundary conditions.The accuracy and stability of the scheme are validated by examples,results and estimate order.展开更多
基金Project supported by the National Natural Science Foundation of China.
文摘This paper deals with the solution of a parametric equation with generalized boundary condiiton in transport theory. It gives the distribution of parameter (so called delta-eigenvalue [1]) with which the equation has non-zero solution. A necessary and sufficient condition for the existence of; he control critical eigenvalue delta0 is established.
文摘Generalized impedance boundary conditions are employed to simplify the solution of the Sommerfeld half-space problem. An analytical expression is derived for the Hertz potential of a vertical electric dipole over the earth’s surface, in which the earth is assumed to be a layered media or homogeneous dissipative half-space. A Sommerfeld type integral in the potential function is expressed as the sum of two parts: a zeroth order Hankel function and an absolutely convergent series of Bessel functions. In addition, two expressions in closed form are obtained as the far-field and near-field approximation of the present result.
文摘In this paper the concepts of the boundary value problem of abstract kinetic equation with the first kind of critical parameter γ 0 and generalized periodic boundary conditions are introduced in a Lebesgue space which consists of functions with vector valued in a general Banach space, and then describe the solution of these abstract boundary value problem by the abstract linear integral operator of Volterra type. We call this process the integral operator solving process.
文摘This study deals with the stagnation point flow of ferrofluid over a flat plate with non-linear slip boundary condition in the presence of homogeneous-heterogeneous reactions.Three kinds of ferroparticles,namely,magnetite(Fe_3O_4),cobalt ferrite(CoFe_2O_4) and manganese zinc ferrite(Mn-ZnFe_2O_4) are taken into account with water and kerosene as conventional base fluids.The developed model of homogeneous-heterogeneous reactions in boundary layer flow with equal and unequal diffusivities for reactant and autocatalysis is considered.The governing partial differential equations are converted into system of non-linear ordinary differential equations by mean of similarity transformations.These ordinary differential equations are integrated numerically using shooting method.The effects of pertinent parameters on velocity and concentration profiles are presented graphically and discussed.We found that in the presence of Fe_3O_4-kerosene and CoFe_2O_4-kerosene,velocity profiles increase for large values of α and β whereas there is a decrement in concentration profiles with increasing values of if and K_s.Furthermore,the comparison between non-magnetic(A1_2O_3) and magnetic Fe_3O_4 nanoparticles is given in tabular form.
基金supported by the National Natural Science Foundation of China(Nos.12171024,11901025,11971217,11971020)。
文摘In this paper,we focus on the immiscible compressible two-phase flow described by the coupled compressible Navier-Stokes system and the modified Allen-Cahn equations.The generalized Navier boundary condition and the relaxation boundary condition are established in order to solve the problem of moving contact lines on the solid boundary by using the principle of minimum energy dissipation.The existence and uniqueness for local strong solution in three dimensional bounded domain for this type of boundary value problem is obtained by the elementary energy method and the maximum principle.
文摘In this paper,the temperature distribution in the multi-layer of the skin is studied when the skin surface is subjected to most generalized boundary condition.Our skin model consists of three layers known as the epidermis,dermis,and subcutaneous layers.All layers of skin are assumed to be connected with point of interface condition and taking the barrier in between each of the two layers by symmetric flux condition and analyzing each layer separately.The classical Fourier and non-Fourier(DPL)models are extended to analyze the behavior of heat transfer in the multi-layer of the skin.The Laplace transform technique is used to derive analytical solutions for the multi-layer of skin models.The effects of the variability of different parameters such as relaxation time,layer thickness,and different types of boundary conditions on the behavior of temperature distribution in the multi-layer of skin are analyzed and discussed in detail.All the effects are shown graphically.It has been observed that during temperature distribution in the multi-layer of skin,the measurement of skin damage is less on the DPL model(rq>Tt)in comparison to the classical Fourier model.
文摘Estimates of the type L1-L∞ for the Schrödinger Equation on the Line and on Half-Line with a regular potential V(x), express the dispersive nature of the Schrödinger Equation and are the essential elements in the study of the problems of initial values, the asymptotic times for large solutions and Scattering Theory for the Schrödinger equation and non-linear in general;for other equations of Non-linear Evolution. In general, the estimates Lp-Lp' express the dispersive nature of this equation. And its study plays an important role in problems of non-linear initial values;likewise, in the study of problems nonlinear initial values;see [1] [2] [3]. On the other hand, following a series of problems proposed by V. Marchenko [4], that we will name Marchenko’s formulation, and relate it to a generalized version of Theorem 1 given in [1], the main theorem (Theorem 1) of this article provides a transformation operator W?that transforms the Reduced Radial Schrödinger Equation (RRSE) (whose main characteristic is the addition a singular term of quadratic order to a regular potential V(x)) in the Schrödinger Equation on Half-Line (RSEHL) under W. That is to say;W?eliminates the singular term of quadratic order of potential V(x) in the asymptotic development towards zero and adds to the potential V(x) a bounded term and a term exponentially decrease fast enough in the asymptotic development towards infinity, which continues guaranteeing the uniqueness of the potential V(x) in the condition of the infinity boundary. Then the L1-L∞ estimates for the (RRSE) are preserved under the transformation operator , as in the case of (RSEHL) where they were established in [3]. Finally, as an open question, the possibility of extending the L1-L∞ estimates for the case (RSEHL), where added to the potential V(x) an analytical perturbation is mentioned.
基金National Natural Science Foundation of China under grants 11801389 and 11571128.
文摘In this paper,an efficient numerical method for solving the general fractional diffusion equations with Riesz fractional derivative is proposed by combining the fractional compact difference operator and the boundary value methods.In order to efficiently solve the generated linear large-scale system,the generalized minimal residual(GMRES)algorithm is applied.For accelerating the convergence rate of the it erative,the St rang-type,Chantype and P-type preconditioners are introduced.The suggested met hod can reach higher order accuracy both in space and in time than the existing met hods.When the used boundary value method is Ak1,K2-stable,it is proven that Strang-type preconditioner is invertible and the spectra of preconditioned matrix is clustered around 1.It implies that the iterative solution is convergent rapidly.Numerical experiments with the absorbing boundary condition and the generalized Dirichlet type further verify the efficiency.
基金Zhenlin Guo is partially supported by the 150th Anniversary Postdoctoral Mobility Grants(2014-15 awards)and the reference number is PMG14-1509Shuangling Dong is supported by the National Natural Science Foundation of China(No.51406098)And also thank the China Postdoctoral Science Foundation(No.2014M560967).
文摘In this paper,we compute a phase field(diffuse interface)model of CahnHilliard type for moving contact line problems governing the motion of isothermal multiphase incompressible fluids.The generalized Navier boundary condition proposed by Qian et al.[1]is adopted here.We discretize model equations using a continuous finite element method in space and a modified midpoint scheme in time.We apply a penalty formulation to the continuity equation which may increase the stability in the pressure variable.Two kinds of immiscible fluids in a pipe and droplet displacement with a moving contact line under the effect of pressure driven shear flow are studied using a relatively coarse grid.We also derive the discrete energy law for the droplet displacement case,which is slightly different due to the boundary conditions.The accuracy and stability of the scheme are validated by examples,results and estimate order.