The authors give the necessary and sufficient conditions for a generalized circle in a Weyl hypersurface to be generalized circle in the enveloping Weyl space. They then obtain the neccessary and sufficient conditions...The authors give the necessary and sufficient conditions for a generalized circle in a Weyl hypersurface to be generalized circle in the enveloping Weyl space. They then obtain the neccessary and sufficient conditions under which a generalized concircular transformation of one Weyl space onto another induces a generalized transformation on its subspaces. Finally, it is shown that any totally geodesic or totally umbilical hypersurface of a generalized concircularly flat Weyl space is also generalized concircularly flat.展开更多
It is well known that the Einstein tensor G for a Riemannian manifold defined by Gα^β = 1/2α^β ,Rα^β=g^α^β γ where Rγα and R are respectively the Ricci tensor and the scalar curvature of the manifold, p...It is well known that the Einstein tensor G for a Riemannian manifold defined by Gα^β = 1/2α^β ,Rα^β=g^α^β γ where Rγα and R are respectively the Ricci tensor and the scalar curvature of the manifold, plays an important part in Einstein s theory of gravitation as well as in proving some theorems in Riemannian geometry. In this work, we first obtain the generalized Einstein tensor for a Weyl manifold. Then, after studying some properties of generalized Einstein tensor, we prove that the conformal invariance of the generalized Einstein tensor implies the conformal invariance of the curvature tensor of the Weyl manifold and conversely. Moreover, we show that such Weyl manifolds admit a one-parameter family of hypersurfaces the orthogonal trajectories of which are geodesics. Finally, a necessary and sufficient condition in order that the generalized circles of a Weyl manifold be preserved by a conformal mapping is stated in terms of generalized Einstein tensors at corresponding points.展开更多
文摘The authors give the necessary and sufficient conditions for a generalized circle in a Weyl hypersurface to be generalized circle in the enveloping Weyl space. They then obtain the neccessary and sufficient conditions under which a generalized concircular transformation of one Weyl space onto another induces a generalized transformation on its subspaces. Finally, it is shown that any totally geodesic or totally umbilical hypersurface of a generalized concircularly flat Weyl space is also generalized concircularly flat.
文摘It is well known that the Einstein tensor G for a Riemannian manifold defined by Gα^β = 1/2α^β ,Rα^β=g^α^β γ where Rγα and R are respectively the Ricci tensor and the scalar curvature of the manifold, plays an important part in Einstein s theory of gravitation as well as in proving some theorems in Riemannian geometry. In this work, we first obtain the generalized Einstein tensor for a Weyl manifold. Then, after studying some properties of generalized Einstein tensor, we prove that the conformal invariance of the generalized Einstein tensor implies the conformal invariance of the curvature tensor of the Weyl manifold and conversely. Moreover, we show that such Weyl manifolds admit a one-parameter family of hypersurfaces the orthogonal trajectories of which are geodesics. Finally, a necessary and sufficient condition in order that the generalized circles of a Weyl manifold be preserved by a conformal mapping is stated in terms of generalized Einstein tensors at corresponding points.