In the present study we have formulated a Minimum Cross Fuzzy Entropy Problem (Minx(F)EntP) and proposed sufficient conditions for existence of its solution. Mentioned problem can be formulated as follows. In the ...In the present study we have formulated a Minimum Cross Fuzzy Entropy Problem (Minx(F)EntP) and proposed sufficient conditions for existence of its solution. Mentioned problem can be formulated as follows. In the set of membership functions satisfying the given moment constraints generated by given moment functions it is required to choose the membership function that is closest to a priori membership function in the sense of cross fuzzy entropy measure. The existence of solution of formulated problem is proved by virtue of concavity property of cross fuzzy entropy measure, the implicit function theorem and Lagrange multipliers method. Moreover, Generalized Cross Fuzzy Entropy Optimization Methods in the form of MinMinx(F)EntM and MaxMinx(F)EntM are suggested on the basis of primary phase of minimizing cross fuzzy entropy measure for fixed moment vector function and on the definition of the special functional with Minx(F)Ent values of cross fuzzy entropy measure. Next phase for obtaining mentioned distributions consists of optimization of defined functional with respect to moment vector functions. Distributions obtained by mentioned methods are defined as (MinMinx(F)Ent)m and (MaxMinx(F)Ent)m distributions.展开更多
This study is connected with new Generalized Maximum Fuzzy Entropy Methods (GMax(F)EntM) in the form of MinMax(F)EntM and MaxMax(F)EntM belonging to us. These methods are based on primary maximizing Max(F)En...This study is connected with new Generalized Maximum Fuzzy Entropy Methods (GMax(F)EntM) in the form of MinMax(F)EntM and MaxMax(F)EntM belonging to us. These methods are based on primary maximizing Max(F)Ent measure for fixed moment vector function in order to obtain the special functional with maximum values of Max(F)Ent measure and secondary optimization of mentioned functional with respect to moment vector functions. Distributions, in other words sets of successive values of estimated membership function closest to (furthest from) the given membership function in the sense of Max(F)Ent measure, obtained by mentioned methods are defined as (MinMax(F)Ent)m which is closest to a given membership function and (MaxMax(F)Ent)m which is furthest from a given membership function. The aim of this study consists of applying MinMax(F)EntM and MaxMax(F)EntM on given wind speed data. Obtained results are realized by using MATLAB programme. The performances of distributions (MinMax(F)En0m and (MaxMax(F)Ent)m generated by using Generalized Maximum Fuzzy Entropy Methods are established by Chi-Square, Root Mean Square Error criterias and Max(F)Ent measure.展开更多
A method with the fuzzy entropy for measuring fuzziness to fuzzy problem in rough sets is proposed. A new sort of the fuzzy entropy is given. The calculating formula and the equivalent expression method with the fuzzy...A method with the fuzzy entropy for measuring fuzziness to fuzzy problem in rough sets is proposed. A new sort of the fuzzy entropy is given. The calculating formula and the equivalent expression method with the fuzzy entropy in rough sets based on equivalence relation are provided, and the properties of the fuzzy entropy are proved. The fuzzy entropy based on equivalent relation is extended to generalize the fuzzy entropy based on general binary relation, and the calculating formula and the equivalent expression of the generalized fuzzy entropy are also given. Finally, an example illustrates the way for getting the fuzzy entropy. Results show that the fuzzy entropy can conveniently measure the fuzziness in rough sets.展开更多
文摘In the present study we have formulated a Minimum Cross Fuzzy Entropy Problem (Minx(F)EntP) and proposed sufficient conditions for existence of its solution. Mentioned problem can be formulated as follows. In the set of membership functions satisfying the given moment constraints generated by given moment functions it is required to choose the membership function that is closest to a priori membership function in the sense of cross fuzzy entropy measure. The existence of solution of formulated problem is proved by virtue of concavity property of cross fuzzy entropy measure, the implicit function theorem and Lagrange multipliers method. Moreover, Generalized Cross Fuzzy Entropy Optimization Methods in the form of MinMinx(F)EntM and MaxMinx(F)EntM are suggested on the basis of primary phase of minimizing cross fuzzy entropy measure for fixed moment vector function and on the definition of the special functional with Minx(F)Ent values of cross fuzzy entropy measure. Next phase for obtaining mentioned distributions consists of optimization of defined functional with respect to moment vector functions. Distributions obtained by mentioned methods are defined as (MinMinx(F)Ent)m and (MaxMinx(F)Ent)m distributions.
文摘This study is connected with new Generalized Maximum Fuzzy Entropy Methods (GMax(F)EntM) in the form of MinMax(F)EntM and MaxMax(F)EntM belonging to us. These methods are based on primary maximizing Max(F)Ent measure for fixed moment vector function in order to obtain the special functional with maximum values of Max(F)Ent measure and secondary optimization of mentioned functional with respect to moment vector functions. Distributions, in other words sets of successive values of estimated membership function closest to (furthest from) the given membership function in the sense of Max(F)Ent measure, obtained by mentioned methods are defined as (MinMax(F)Ent)m which is closest to a given membership function and (MaxMax(F)Ent)m which is furthest from a given membership function. The aim of this study consists of applying MinMax(F)EntM and MaxMax(F)EntM on given wind speed data. Obtained results are realized by using MATLAB programme. The performances of distributions (MinMax(F)En0m and (MaxMax(F)Ent)m generated by using Generalized Maximum Fuzzy Entropy Methods are established by Chi-Square, Root Mean Square Error criterias and Max(F)Ent measure.
文摘A method with the fuzzy entropy for measuring fuzziness to fuzzy problem in rough sets is proposed. A new sort of the fuzzy entropy is given. The calculating formula and the equivalent expression method with the fuzzy entropy in rough sets based on equivalence relation are provided, and the properties of the fuzzy entropy are proved. The fuzzy entropy based on equivalent relation is extended to generalize the fuzzy entropy based on general binary relation, and the calculating formula and the equivalent expression of the generalized fuzzy entropy are also given. Finally, an example illustrates the way for getting the fuzzy entropy. Results show that the fuzzy entropy can conveniently measure the fuzziness in rough sets.