With the aid of a class of nonlinear ordinary differential equation (ODE) and its various positive solutions, four types of exact solutions of the generalized derivative nonlinear Sehrodinger equation (GDNLSE) hav...With the aid of a class of nonlinear ordinary differential equation (ODE) and its various positive solutions, four types of exact solutions of the generalized derivative nonlinear Sehrodinger equation (GDNLSE) have been found out, which are the bell-type solitary wave solution, the algebraic solitary wave solution, the kink-type solitary wave solution and the sinusoidal traveling wave solution, provided that the coefficients of GDNLSE satisfy certain constraint conditions. For more general GDNLSE, the similar results are also given.展开更多
We present exact bright multi-soliton solutions of a generalized nonautonomous nonlinear Schroinger equation with time-and space-dependent distributed coefficients and an external potential which describes a pulse pro...We present exact bright multi-soliton solutions of a generalized nonautonomous nonlinear Schroinger equation with time-and space-dependent distributed coefficients and an external potential which describes a pulse propagating in nonlinear media when its transverse and longitudinal directions are nonuniformly distributed.Such solutions exist in certain constraint conditions on the coefficients depicting dispersion,nonlinearity,and gain(loss).Various shapes of bright solitons and interesting interactions between two solitons are observed.Physical applications of interest to the field and stability of the solitons are discussed.展开更多
基金the Natural Science Foundation of Education Department of Henan Province of China under Grant No.2007110010the Science Foundation of Henan University of Science and Technology under Grant Nos.2006ZY-001 and 2006ZY-011
文摘With the aid of a class of nonlinear ordinary differential equation (ODE) and its various positive solutions, four types of exact solutions of the generalized derivative nonlinear Sehrodinger equation (GDNLSE) have been found out, which are the bell-type solitary wave solution, the algebraic solitary wave solution, the kink-type solitary wave solution and the sinusoidal traveling wave solution, provided that the coefficients of GDNLSE satisfy certain constraint conditions. For more general GDNLSE, the similar results are also given.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10875106 and 11175158)
文摘We present exact bright multi-soliton solutions of a generalized nonautonomous nonlinear Schroinger equation with time-and space-dependent distributed coefficients and an external potential which describes a pulse propagating in nonlinear media when its transverse and longitudinal directions are nonuniformly distributed.Such solutions exist in certain constraint conditions on the coefficients depicting dispersion,nonlinearity,and gain(loss).Various shapes of bright solitons and interesting interactions between two solitons are observed.Physical applications of interest to the field and stability of the solitons are discussed.