The Emden differential equation is one of the most widely studied and challenging nonlinear dynamics equations in literature. It finds applications in various areas of study such as celestial mechanics, fluid mechanic...The Emden differential equation is one of the most widely studied and challenging nonlinear dynamics equations in literature. It finds applications in various areas of study such as celestial mechanics, fluid mechanics, Steller structure, isothermal gas spheres, thermionic currents and so on. Because of the importance of the equation, the method of generalized Sundman transformation (GST) as proposed by Nakpim and Meleshko is used for linearizing the Emden differential equation. The Emden differential equation considered here is a modification of the equation given by Berkovic. The results obtained in this paper imply that the Emden equation cannot be linearized by a point transformation. The general solution of the modified Emden equation is also obtained.展开更多
In this paper, we consider the general ordinary quasi-differential expression τ of order n with complex coefficients and its formal adjoint τ<sup>+</sup> on the interval [a,b). We shall show in the case ...In this paper, we consider the general ordinary quasi-differential expression τ of order n with complex coefficients and its formal adjoint τ<sup>+</sup> on the interval [a,b). We shall show in the case of one singular end-point and under suitable conditions that all solutions of a general ordinary quasi-differential equation are in the weighted Hilbert space provided that all solutions of the equations and its adjoint are in . Also, a number of results concerning the location of the point spectra and regularity fields of the operators generated by such expressions may be obtained. Some of these results are extensions or generalizations of those in the symmetric case, while the others are new.展开更多
In this paper, the principle techinique of the differentiator method, and some examples using the method to obtain the general solution and special solution of the differential equation are introduced. The essential d...In this paper, the principle techinique of the differentiator method, and some examples using the method to obtain the general solution and special solution of the differential equation are introduced. The essential difference between this method and the others is that by this method special and general solutions can be obtained directly with the operations of the differentor in the differential equation and without the enlightenment of other scientific knowledge.展开更多
Parameter estimation for ordinary differential equations arises in many fields of science and engineering. To be the best of our knowledge, traditional methods are often either computationally intensive or inaccurate ...Parameter estimation for ordinary differential equations arises in many fields of science and engineering. To be the best of our knowledge, traditional methods are often either computationally intensive or inaccurate for statistical inference. Ramsay et al.(2007) proposed a generalized profiling procedure. It is easily implementable and has been demonstrated to have encouraging numerical performance. However, little is known about statistical properties of this procedure. In this paper, we provide a theoretical justification of the generalized profiling procedure. Under some regularity conditions, the procedure is shown to be consistent for a broad range of tuning parameters. When the tuning parameters are sufficiently large, the procedure can be further shown to be asymptotically normal and efficient.展开更多
文摘The Emden differential equation is one of the most widely studied and challenging nonlinear dynamics equations in literature. It finds applications in various areas of study such as celestial mechanics, fluid mechanics, Steller structure, isothermal gas spheres, thermionic currents and so on. Because of the importance of the equation, the method of generalized Sundman transformation (GST) as proposed by Nakpim and Meleshko is used for linearizing the Emden differential equation. The Emden differential equation considered here is a modification of the equation given by Berkovic. The results obtained in this paper imply that the Emden equation cannot be linearized by a point transformation. The general solution of the modified Emden equation is also obtained.
文摘In this paper, we consider the general ordinary quasi-differential expression τ of order n with complex coefficients and its formal adjoint τ<sup>+</sup> on the interval [a,b). We shall show in the case of one singular end-point and under suitable conditions that all solutions of a general ordinary quasi-differential equation are in the weighted Hilbert space provided that all solutions of the equations and its adjoint are in . Also, a number of results concerning the location of the point spectra and regularity fields of the operators generated by such expressions may be obtained. Some of these results are extensions or generalizations of those in the symmetric case, while the others are new.
文摘In this paper, the principle techinique of the differentiator method, and some examples using the method to obtain the general solution and special solution of the differential equation are introduced. The essential difference between this method and the others is that by this method special and general solutions can be obtained directly with the operations of the differentor in the differential equation and without the enlightenment of other scientific knowledge.
基金supported by National Science Foundation of USA (Grant Nos. DMS1209191 and DMS-1507511)
文摘Parameter estimation for ordinary differential equations arises in many fields of science and engineering. To be the best of our knowledge, traditional methods are often either computationally intensive or inaccurate for statistical inference. Ramsay et al.(2007) proposed a generalized profiling procedure. It is easily implementable and has been demonstrated to have encouraging numerical performance. However, little is known about statistical properties of this procedure. In this paper, we provide a theoretical justification of the generalized profiling procedure. Under some regularity conditions, the procedure is shown to be consistent for a broad range of tuning parameters. When the tuning parameters are sufficiently large, the procedure can be further shown to be asymptotically normal and efficient.