A generalized flexibility–based objective function utilized for structure damage identification is constructed for solving the constrained nonlinear least squares optimized problem. To begin with, the generalized fle...A generalized flexibility–based objective function utilized for structure damage identification is constructed for solving the constrained nonlinear least squares optimized problem. To begin with, the generalized flexibility matrix (GFM) proposed to solve the damage identification problem is recalled and a modal expansion method is introduced. Next, the objective function for iterative optimization process based on the GFM is formulated, and the Trust-Region algorithm is utilized to obtain the solution of the optimization problem for multiple damage cases. And then for computing the objective function gradient, the sensitivity analysis regarding design variables is derived. In addition, due to the spatial incompleteness, the influence of stiffness reduction and incomplete modal measurement data is discussed by means of two numerical examples with several damage cases. Finally, based on the computational results, it is evident that the presented approach provides good validity and reliability for the large and complicated engineering structures.展开更多
In this article, the generalized reflexive solution of matrix equations (AX = B, XC = D) is considered. With special properties of generalized reflexive matrices, the necessary and sufficient conditions for the solv...In this article, the generalized reflexive solution of matrix equations (AX = B, XC = D) is considered. With special properties of generalized reflexive matrices, the necessary and sufficient conditions for the solvability and the general expression of the solution are obtained. Moreover, the related optimal approximation problem to a given matrix over the solution set is solved.展开更多
The adaptive generalized matrix projective lag synchronization between two different complex networks with non-identical nodes and different dimensions is investigated in this paper. Based on Lyapunov stability theory...The adaptive generalized matrix projective lag synchronization between two different complex networks with non-identical nodes and different dimensions is investigated in this paper. Based on Lyapunov stability theory and Barbalat's lemma, generalized matrix projective lag synchronization criteria are derived by using the adaptive control method. Furthermore, each network can be undirected or directed, connected or disconnected, and nodes in either network may have identical or different dynamics. The proposed strategy is applicable to almost all kinds of complex networks. In addition, numerical simulation results are presented to illustrate the effectiveness of this method, showing that the synchronization speed is sensitively influenced by the adaptive law strength, the network size, and the network topological structure.展开更多
In this paper, solutions to the generalized Sylvester matrix equations AX -XF = BY and MXN -X = TY with A, M ∈ R^n×n, B, T ∈ Rn×r, F, N ∈ R^p×p and the matrices N, F being in companion form, are est...In this paper, solutions to the generalized Sylvester matrix equations AX -XF = BY and MXN -X = TY with A, M ∈ R^n×n, B, T ∈ Rn×r, F, N ∈ R^p×p and the matrices N, F being in companion form, are established by a singular value decomposition of a matrix with dimensions n × (n + pr). The algorithm proposed in this paper for the euqation AX - XF = BY does not require the controllability of matrix pair (A, B) and the restriction that A, F do not have common eigenvalues. Since singular value decomposition is adopted, the algorithm is numerically stable and may provide great convenience to the computation of the solution to these equations, and can perform important functions in many design problems in control systems theory.展开更多
Let gl0|2 be a subalgebra of the general linear Lie superalgebra.In this paper,outer derivations from gl0|2 to the generalized Witt Lie superalgebra are completely determined by matrices.
Pseudopolar rings are closely related to strongly -regular rings, uniquelystrongly clean rings and semiregular rings. In this paper, we investigate pseudopolar-ity of generalized matrix rings Ks(R) over a local ring...Pseudopolar rings are closely related to strongly -regular rings, uniquelystrongly clean rings and semiregular rings. In this paper, we investigate pseudopolar-ity of generalized matrix rings Ks(R) over a local ring R. We determine the conditionsunder which elements of Ks(R) are pseudopolar. Assume that R is a local ring. It isshown that A ∈ Ks(R) is pseudopolar if and only if A is invertible or A^2 ∈ J(Ks(R))or A is similar to a diagonal matrix [ u 0 0 j ]; where lu -rj and lj-ru are injectiveand u 2 U(R) and j ∈ J(R). Furthermore, several equivalent conditions for Ks(R)over a local ring R to be pseudopolar are obtained.展开更多
Generalized strictly diagonally dominant matrices play a wide and important role in computational mathematics, mathematical physics, theory of dynamical systems, etc.But it is difficult to judge a matrix is or not gen...Generalized strictly diagonally dominant matrices play a wide and important role in computational mathematics, mathematical physics, theory of dynamical systems, etc.But it is difficult to judge a matrix is or not generalized strictly diagonally dominant matrix.In this paper, by using the properties of α-chain diagonally dominant matrix, we obtain new criteria for judging generalized strictly diagonally dominant matrix, which enlarge the identification range.展开更多
In this paper we derive a practical method of solving simultaneously the problem of Schmidt decomposition of quaternion matrix and the orthonormalization of vectors in a generalized unitary space by using elementary c...In this paper we derive a practical method of solving simultaneously the problem of Schmidt decomposition of quaternion matrix and the orthonormalization of vectors in a generalized unitary space by using elementary column operations on matrices over the quaternion field.展开更多
The expert set theory performs an important part in making decisions. It can successfully convey the opinions of every expert since it includes several experts. In this study, generalizations and soft expert sets are ...The expert set theory performs an important part in making decisions. It can successfully convey the opinions of every expert since it includes several experts. In this study, generalizations and soft expert sets are combined. First, the generalized soft expert set notion is presented, then follows the definition of operation approaches and characteristics as the complement, union, intersection, AND and OR. The application of the generalized soft expert set concept to decision issues is then presented with an example. The study also introduces the idea of a generalized soft expert matrix and demonstrates how it may be used to solve decision-making issues. The most striking aspect of this paper is to present the concepts of generalized soft expert sets and generalized soft expert matrices and to apply them to the same decision-making scenario.展开更多
If an operator is not invertible, we are interested if there is a subspace such that the reduction of the operator to that subspace is invertible. In this paper we give a spectral approach to generalized inverses cons...If an operator is not invertible, we are interested if there is a subspace such that the reduction of the operator to that subspace is invertible. In this paper we give a spectral approach to generalized inverses considering the subspace determined by the range of the spectral projection associated with an operator and a spectral set containing the point 0. We compare the cases, 0 is a simple pole of the resolvent function, 0 is a pole of order n of the resolvent function, 0 is an isolated point of the spectrum, and 0 is contained in a circularly isolated spectral set.展开更多
In this paper, a system of complex matrix equations was studied. Necessary and sufficient conditions for the existence and the expression of generalized bipositive semidefinite solution to the system were given. In ad...In this paper, a system of complex matrix equations was studied. Necessary and sufficient conditions for the existence and the expression of generalized bipositive semidefinite solution to the system were given. In addition, a criterion for a matrix to be generalized bipositive semidefinite was determined.展开更多
Let A be a Frobenius k-algebra. The matrix algebra R =(■) is called a generalized matrix algebra over a Frobenius algebra A. In this paper we show that R is also a Frobenius algebra.
In this paper, it is proved that under certain conditions, each Jordan left derivation on a generalized matrix algebra is zero and each generalized Jordan left derivation is a generalized left derivation.
In this paper, a three dimensional matrix valued rational interpolant (TGMRI) is first constructed by making use of the generalized inverse of matrices. The interpolants are of the Thiele type branched continued fra...In this paper, a three dimensional matrix valued rational interpolant (TGMRI) is first constructed by making use of the generalized inverse of matrices. The interpolants are of the Thiele type branched continued fraction form, with matrix numerator and scalar denominator. Some properties of TGMRI are given. An efficient recursive algorithm is proposed. The results in the paper can be extend to n variable.展开更多
Let G be a generalized matrix algebra over a commutative ring R and Z(G) be the center of G. Suppose that F, T :G→G are two co-commuting R-linear mappings, i.e., F(x)x = xT(x) for all x ∈ G. In this note, we ...Let G be a generalized matrix algebra over a commutative ring R and Z(G) be the center of G. Suppose that F, T :G→G are two co-commuting R-linear mappings, i.e., F(x)x = xT(x) for all x ∈ G. In this note, we study the question of when co-commuting mappings on G are proper.展开更多
We present componentwise condition numbers for the problems of MoorePenrose generalized matrix inversion and linear least squares. Also, the condition numbers for these condition numbers are given.
In this paper,we intreduce the concept and discuss the properties of minimum cycle of row vector in a generalized circulant Fuzzy matrix. We present a new expression for circulant Fuzzy matrix,and discuss some propert...In this paper,we intreduce the concept and discuss the properties of minimum cycle of row vector in a generalized circulant Fuzzy matrix. We present a new expression for circulant Fuzzy matrix,and discuss some properties of the idempotent elements of the semigroup of generalized circulant Fuzzy matrixes in connection with minimum cycle of row vector.展开更多
Assume that a convergent matrix sequence{A<sub>n</sub>}:A<sub>n</sub>→A(n→∞), A<sub>n</sub>,A∈C<sup>3×3</sup>.We want to form a new matrix sequence {H<sub&...Assume that a convergent matrix sequence{A<sub>n</sub>}:A<sub>n</sub>→A(n→∞), A<sub>n</sub>,A∈C<sup>3×3</sup>.We want to form a new matrix sequence {H<sub>n</sub>}, derived from {A<sub>n</sub>}, which has also A aslimit and whose convergence is faster than the of {A<sub>n</sub>}. Three rational extrapolation meth-ods for accelerating the convergence of matrix sequences {A<sub>n</sub>} are presented in this paper.The underlying methods are based on the generalized inverse for matrices which is展开更多
The penalty equation of LCP is transformed into the absolute value equation, and then the existence of solutions for the penalty equation is proved by the regularity of the interval matrix. We propose a generalized Ne...The penalty equation of LCP is transformed into the absolute value equation, and then the existence of solutions for the penalty equation is proved by the regularity of the interval matrix. We propose a generalized Newton method for solving the linear complementarity problem with the regular interval matrix based on the nonlinear penalized equation. Further, we prove that this method is convergent. Numerical experiments are presented to show that the generalized Newton method is effective.展开更多
According to the definition of the new hypothetical states which have obvious physical significance and are termed as no-gravity static and accelerated states, a method for exact computation of the parallel robot's g...According to the definition of the new hypothetical states which have obvious physical significance and are termed as no-gravity static and accelerated states, a method for exact computation of the parallel robot's generalized inertia matrix is presented. Based on the matrix theory, the generalized inertia matrix of the parallel robot can be computed on the assumption that the robot is in these new hypothetical states respectively. The approach is demonstrated by the Delta robot as an example. Based on the principle of the virtual work, the inverse dynamics model of the robot is formulized after the kinematics analysis. Finally, a numerical example is given and the element distribution of the Delta robot's inertia matrix in the workspace is studied. The method has computationa', advantage of numerical accuracy for the Delta robot and can be parallelized easily.展开更多
文摘A generalized flexibility–based objective function utilized for structure damage identification is constructed for solving the constrained nonlinear least squares optimized problem. To begin with, the generalized flexibility matrix (GFM) proposed to solve the damage identification problem is recalled and a modal expansion method is introduced. Next, the objective function for iterative optimization process based on the GFM is formulated, and the Trust-Region algorithm is utilized to obtain the solution of the optimization problem for multiple damage cases. And then for computing the objective function gradient, the sensitivity analysis regarding design variables is derived. In addition, due to the spatial incompleteness, the influence of stiffness reduction and incomplete modal measurement data is discussed by means of two numerical examples with several damage cases. Finally, based on the computational results, it is evident that the presented approach provides good validity and reliability for the large and complicated engineering structures.
基金supported by National Natural Science Foundation of China (10571047)and by Scientific Research Fund of Hunan Provincial Education Department of China Grant(06C235)+1 种基金by Central South University of Forestry and Technology (06Y017)by Specialized Research Fund for the Doctoral Program of Higher Education (20060532014)
文摘In this article, the generalized reflexive solution of matrix equations (AX = B, XC = D) is considered. With special properties of generalized reflexive matrices, the necessary and sufficient conditions for the solvability and the general expression of the solution are obtained. Moreover, the related optimal approximation problem to a given matrix over the solution set is solved.
文摘The adaptive generalized matrix projective lag synchronization between two different complex networks with non-identical nodes and different dimensions is investigated in this paper. Based on Lyapunov stability theory and Barbalat's lemma, generalized matrix projective lag synchronization criteria are derived by using the adaptive control method. Furthermore, each network can be undirected or directed, connected or disconnected, and nodes in either network may have identical or different dynamics. The proposed strategy is applicable to almost all kinds of complex networks. In addition, numerical simulation results are presented to illustrate the effectiveness of this method, showing that the synchronization speed is sensitively influenced by the adaptive law strength, the network size, and the network topological structure.
基金This work was supported by the Chinese Outstanding Youth Foundation(No.69925308)Program for Changjiang Scholars and Innovative ResearchTeam in University.
文摘In this paper, solutions to the generalized Sylvester matrix equations AX -XF = BY and MXN -X = TY with A, M ∈ R^n×n, B, T ∈ Rn×r, F, N ∈ R^p×p and the matrices N, F being in companion form, are established by a singular value decomposition of a matrix with dimensions n × (n + pr). The algorithm proposed in this paper for the euqation AX - XF = BY does not require the controllability of matrix pair (A, B) and the restriction that A, F do not have common eigenvalues. Since singular value decomposition is adopted, the algorithm is numerically stable and may provide great convenience to the computation of the solution to these equations, and can perform important functions in many design problems in control systems theory.
基金the Fundamental Research Fund(2572018BC15)for the Central Universitiesthe NSF(11171055)of China
文摘Let gl0|2 be a subalgebra of the general linear Lie superalgebra.In this paper,outer derivations from gl0|2 to the generalized Witt Lie superalgebra are completely determined by matrices.
文摘Pseudopolar rings are closely related to strongly -regular rings, uniquelystrongly clean rings and semiregular rings. In this paper, we investigate pseudopolar-ity of generalized matrix rings Ks(R) over a local ring R. We determine the conditionsunder which elements of Ks(R) are pseudopolar. Assume that R is a local ring. It isshown that A ∈ Ks(R) is pseudopolar if and only if A is invertible or A^2 ∈ J(Ks(R))or A is similar to a diagonal matrix [ u 0 0 j ]; where lu -rj and lj-ru are injectiveand u 2 U(R) and j ∈ J(R). Furthermore, several equivalent conditions for Ks(R)over a local ring R to be pseudopolar are obtained.
基金Supported by the National Natural Science Foundation of China(71261010)
文摘Generalized strictly diagonally dominant matrices play a wide and important role in computational mathematics, mathematical physics, theory of dynamical systems, etc.But it is difficult to judge a matrix is or not generalized strictly diagonally dominant matrix.In this paper, by using the properties of α-chain diagonally dominant matrix, we obtain new criteria for judging generalized strictly diagonally dominant matrix, which enlarge the identification range.
文摘In this paper we derive a practical method of solving simultaneously the problem of Schmidt decomposition of quaternion matrix and the orthonormalization of vectors in a generalized unitary space by using elementary column operations on matrices over the quaternion field.
文摘The expert set theory performs an important part in making decisions. It can successfully convey the opinions of every expert since it includes several experts. In this study, generalizations and soft expert sets are combined. First, the generalized soft expert set notion is presented, then follows the definition of operation approaches and characteristics as the complement, union, intersection, AND and OR. The application of the generalized soft expert set concept to decision issues is then presented with an example. The study also introduces the idea of a generalized soft expert matrix and demonstrates how it may be used to solve decision-making issues. The most striking aspect of this paper is to present the concepts of generalized soft expert sets and generalized soft expert matrices and to apply them to the same decision-making scenario.
文摘If an operator is not invertible, we are interested if there is a subspace such that the reduction of the operator to that subspace is invertible. In this paper we give a spectral approach to generalized inverses considering the subspace determined by the range of the spectral projection associated with an operator and a spectral set containing the point 0. We compare the cases, 0 is a simple pole of the resolvent function, 0 is a pole of order n of the resolvent function, 0 is an isolated point of the spectrum, and 0 is contained in a circularly isolated spectral set.
基金Project supported by the National Natural Science Foundation of China (Grant No.60672160)
文摘In this paper, a system of complex matrix equations was studied. Necessary and sufficient conditions for the existence and the expression of generalized bipositive semidefinite solution to the system were given. In addition, a criterion for a matrix to be generalized bipositive semidefinite was determined.
基金The NSF(KJ2016A545,1808085MA14,KJ2018A0839) of Anhui Province
文摘Let A be a Frobenius k-algebra. The matrix algebra R =(■) is called a generalized matrix algebra over a Frobenius algebra A. In this paper we show that R is also a Frobenius algebra.
基金Fundamental Research Funds (N110423007) for the Central Universities
文摘In this paper, it is proved that under certain conditions, each Jordan left derivation on a generalized matrix algebra is zero and each generalized Jordan left derivation is a generalized left derivation.
文摘In this paper, a three dimensional matrix valued rational interpolant (TGMRI) is first constructed by making use of the generalized inverse of matrices. The interpolants are of the Thiele type branched continued fraction form, with matrix numerator and scalar denominator. Some properties of TGMRI are given. An efficient recursive algorithm is proposed. The results in the paper can be extend to n variable.
文摘Let G be a generalized matrix algebra over a commutative ring R and Z(G) be the center of G. Suppose that F, T :G→G are two co-commuting R-linear mappings, i.e., F(x)x = xT(x) for all x ∈ G. In this note, we study the question of when co-commuting mappings on G are proper.
基金the NSF of China under grant 10471027 and Shanghai Education Commission.
文摘We present componentwise condition numbers for the problems of MoorePenrose generalized matrix inversion and linear least squares. Also, the condition numbers for these condition numbers are given.
文摘In this paper,we intreduce the concept and discuss the properties of minimum cycle of row vector in a generalized circulant Fuzzy matrix. We present a new expression for circulant Fuzzy matrix,and discuss some properties of the idempotent elements of the semigroup of generalized circulant Fuzzy matrixes in connection with minimum cycle of row vector.
基金The works is supported by the National Natural Science Foundation of China(19871054)
文摘Assume that a convergent matrix sequence{A<sub>n</sub>}:A<sub>n</sub>→A(n→∞), A<sub>n</sub>,A∈C<sup>3×3</sup>.We want to form a new matrix sequence {H<sub>n</sub>}, derived from {A<sub>n</sub>}, which has also A aslimit and whose convergence is faster than the of {A<sub>n</sub>}. Three rational extrapolation meth-ods for accelerating the convergence of matrix sequences {A<sub>n</sub>} are presented in this paper.The underlying methods are based on the generalized inverse for matrices which is
文摘The penalty equation of LCP is transformed into the absolute value equation, and then the existence of solutions for the penalty equation is proved by the regularity of the interval matrix. We propose a generalized Newton method for solving the linear complementarity problem with the regular interval matrix based on the nonlinear penalized equation. Further, we prove that this method is convergent. Numerical experiments are presented to show that the generalized Newton method is effective.
基金Supported by National Natural Science Foundation of China (No. 50375106) , the State Scholarship Fund (No. 2004812032) and Key Laboratory of Intelligent Manufacturing at Shantou University ( No. Imstu-2002-11).
文摘According to the definition of the new hypothetical states which have obvious physical significance and are termed as no-gravity static and accelerated states, a method for exact computation of the parallel robot's generalized inertia matrix is presented. Based on the matrix theory, the generalized inertia matrix of the parallel robot can be computed on the assumption that the robot is in these new hypothetical states respectively. The approach is demonstrated by the Delta robot as an example. Based on the principle of the virtual work, the inverse dynamics model of the robot is formulized after the kinematics analysis. Finally, a numerical example is given and the element distribution of the Delta robot's inertia matrix in the workspace is studied. The method has computationa', advantage of numerical accuracy for the Delta robot and can be parallelized easily.