In the present paper, we study the polynomial approximation of analytic functions of several complex variables. The characterizations of generalized type of analytic functions of several complex variables have been ob...In the present paper, we study the polynomial approximation of analytic functions of several complex variables. The characterizations of generalized type of analytic functions of several complex variables have been obtained in terms of approximation and interpolation errors.展开更多
Based on the invariance of differential equations under infinitesimal transformations of group, Lie symmetries, exact invariants, perturbation to the symmetries and adiabatic invariants in form of non-Noether for a La...Based on the invariance of differential equations under infinitesimal transformations of group, Lie symmetries, exact invariants, perturbation to the symmetries and adiabatic invariants in form of non-Noether for a Lagrange system are presented. Firstly, the exact invariants of generalized Hojman type led directly by Lie symmetries for a Lagrange system without perturbations are given. Then, on the basis of the concepts of Lie symmetries and higher order adiabatic invariants of a mechanical system, the perturbation of Lie symmetries for the system with the action of small disturbance is investigated, the adiabatic invariants of generalized Hojman type for the system are directly obtained, the conditions for existence of the adiabatic invariants and their forms are proved. Finally an example is presented to illustrate these results.展开更多
For a relativistic Birkhoffian system, the Lie symmetrical perturbation and adiabatic invariants of generalized Bojman type are studied under general infinitesimal transformations. On the basis of the invariance of re...For a relativistic Birkhoffian system, the Lie symmetrical perturbation and adiabatic invariants of generalized Bojman type are studied under general infinitesimal transformations. On the basis of the invariance of relativistic Birkhotfian equations under general infinitesimal transformations,Lie symmetrical transformations of the system are constructed, which only depend on the Birkhoffian variables. The exact invariants in the form of generalized Hojman conserved quantities led by the Lie symmetries of relativistic Birkhoffian system without perturbations are given. Based on the definition of higher-order adiabatic invariants of a mechanical system, the perturbation of Lie symmetries for relativistic Birkhoffian system with the action of small disturbance is investigated, and a new type of adiabatic invariants of the system is obtained. In the end of the paper, an example is given to illustrate the application of the results.展开更多
Simpler formulas are derived for one-range addition theorems for the integer and noninteger n generalized ex- ponential type orbitals, momentum space orbitals, and hyperspherical harmonics with hyperbolic cosine (GET...Simpler formulas are derived for one-range addition theorems for the integer and noninteger n generalized ex- ponential type orbitals, momentum space orbitals, and hyperspherical harmonics with hyperbolic cosine (GETO HC, GMSO HC, and GHSH HC) in position, momentum and four-dimensional spaces, respectively. The final results are expressed in terms of one-range addition theorems of complete orthonormal sets of Ca-exponential type orbitals, Ca- momentum space orbitals and za-hyperspherical harmonics. We notice that the one-range addition theorems for integer and noninteger n-Slater type orbitals and Gaussian type orbitals in position, momentum and four dimensional spaces are special cases of GETO HC, GMSO HC, and GHSH HC. The theorems presented can be useful in the accurate study of the electronic structure of atomic and molecular systems.展开更多
This paper considers the initial boundary value problems with three types of the boundary conditions for nonlinear pseudo-hyperbolic equations of generalized nerve conduction type, using foe eigenfunction method, ...This paper considers the initial boundary value problems with three types of the boundary conditions for nonlinear pseudo-hyperbolic equations of generalized nerve conduction type, using foe eigenfunction method, the conditions for which the solutions blow-up and die-out in the finile time are got.展开更多
A family of Said-Bézier type generalized Ball (SBGB) bases and surfaces with a parameter H over triangular domain is introduced,which unifies Bézier surface and Said-Ball surface and includes several inter...A family of Said-Bézier type generalized Ball (SBGB) bases and surfaces with a parameter H over triangular domain is introduced,which unifies Bézier surface and Said-Ball surface and includes several intermediate surfaces. To convert different bases and surfaces,the dual functionals of bases are presented. As an application of dual functionals,the subdivision formulas for surfaces are established.展开更多
The existence of a global smooth solution for the initial value problem of generalized Kuramoto-Sivashinsky type equations have been obtained. Similarty siolutions and the structure of the traveling waves solution for...The existence of a global smooth solution for the initial value problem of generalized Kuramoto-Sivashinsky type equations have been obtained. Similarty siolutions and the structure of the traveling waves solution for the generalized KS equations are discussed and analysed by using the qualitative theory of ODE and Lie's infinitesimal transformation respectively.展开更多
Solitons and bifurcations for the generalized Tzitzéica type equation are studied by using the theory of dynamical systems and Hamilton function. With the help of Maple and bifurcation theory of differential equa...Solitons and bifurcations for the generalized Tzitzéica type equation are studied by using the theory of dynamical systems and Hamilton function. With the help of Maple and bifurcation theory of differential equations, the bifurcation parameter conditions and all the bifurcation phase portraits are obtained. Because the same energy value of the Hamiltonian function is corresponding to the same orbit, thus the periodic wave solutions, bright soliton and dark soliton solutions are defined.展开更多
In this work, we prove the existence and uniqueness of the solution of the generalized Schrödinger type homogeneous model in the periodic distributional space P’. Furthermore, we prove that the solution depends ...In this work, we prove the existence and uniqueness of the solution of the generalized Schrödinger type homogeneous model in the periodic distributional space P’. Furthermore, we prove that the solution depends continuously respect to the initial data in P’. Introducing a family of weakly continuous operators, we prove that this family is a group of operators in P’. Then, with this family of operators, we get a fine version of the existence and dependency continuous theorem obtained. Finally, we give some remarks derived from this study.展开更多
In this paper, we investigate the existence, uniqueness and the asymptotic equiv- alence of a linear system and a perturbed system of differential equations with piecewise alternately advanced and retarded argument of...In this paper, we investigate the existence, uniqueness and the asymptotic equiv- alence of a linear system and a perturbed system of differential equations with piecewise alternately advanced and retarded argument of generalized type (DEPCAG). This is based in the study of an equivalent integral equation with Cauchy and Green matrices type and in a solution of a DEPCAG integral inequality of Gronwall type. Several examples are also given to show the feasibility of results.展开更多
Let C be a closed convex weakly Cauchy subset of a normed space X. Then we define a new {a,b,c} type nonexpansive and {a,b,c} type contraction mapping T from C into C. These types of mappings will be denoted respectiv...Let C be a closed convex weakly Cauchy subset of a normed space X. Then we define a new {a,b,c} type nonexpansive and {a,b,c} type contraction mapping T from C into C. These types of mappings will be denoted respectively by {a,b,c}-ntype and {a,b,c}-ctype. We proved the following: 1. If T is {a,b,c}-ntype mapping, then inf{ || T(x)-x|| :x C C} =0, accordingly T has a unique fixed point. Moreover, any sequence {Xn}n∈NN in C with limn→∞||T(xn) - Xn|| = 0 has a subsequence strongly convergent to the unique fixed point of T. 2. If T is {a,b,c}-ctype mapping, then T has a unique fixed point. Moreover, for any x∈C the sequence of iterates {Tn (x)}n∈N has subsequence strongly convergent to the unique fixed point of T. This paper extends and generalizes some of the results given in [2,4, 7] and [13].展开更多
The concept of FC-closed subset in FC-space without any linear structure was introduced. Then, the generalized KKM theorem is proved for FC-closed value mappings under some conditions. The FC-space in the theorem is t...The concept of FC-closed subset in FC-space without any linear structure was introduced. Then, the generalized KKM theorem is proved for FC-closed value mappings under some conditions. The FC-space in the theorem is the generalization of L-convex space and the condition of the mapping with finitely FC-closed value is weaker than that with finitely L-closed value.展开更多
For a set S of real numbers, we introduce the concept of S-almost automorphic functions valued in a Banach space. It generalizes in particular the space of Z-almost automorphic functions. Considering the space of S-al...For a set S of real numbers, we introduce the concept of S-almost automorphic functions valued in a Banach space. It generalizes in particular the space of Z-almost automorphic functions. Considering the space of S-almost automorphic functions, we give sufficient conditions of the existence and uniqueness of almost automorphic solutions of a differential equation with a piecewise constant argument of generalized type. This is done using the Banach fixed point theorem.展开更多
Fractional calculus has drawn more attentions of mathematicians and engineers in recent years.A lot of new fractional operators were used to handle various practical problems.In this article,we mainly study four new f...Fractional calculus has drawn more attentions of mathematicians and engineers in recent years.A lot of new fractional operators were used to handle various practical problems.In this article,we mainly study four new fractional operators,namely the CaputoFabrizio operator,the Atangana-Baleanu operator,the Sun-Hao-Zhang-Baleanu operator and the generalized Caputo type operator under the frame of the k-Prabhakar fractional integral operator.Usually,the theory of the k-Prabhakar fractional integral is regarded as a much broader than classical fractional operator.Here,we firstly give a series expansion of the k-Prabhakar fractional integral by means of the k-Riemann-Liouville integral.Then,a connection between the k-Prabhakar fractional integral and the four new fractional operators of the above mentioned was shown,respectively.In terms of the above analysis,we can obtain this a basic fact that it only needs to consider the k-Prabhakar fractional integral to cover these results from the four new fractional operators.展开更多
In the present paper, we study the polynomial approximation of entire functions of several complex variables. The characterizations of generalized order and generalized type of entire functions of slow growth are obta...In the present paper, we study the polynomial approximation of entire functions of several complex variables. The characterizations of generalized order and generalized type of entire functions of slow growth are obtained in terms of approximation and interpolation errors.展开更多
In the paper, the α-order of the Laplace-Stieltjes Transform is introducedfirstly, then we get the relationship between α-order represented by the maximum modulus and α-order represented by A^*n, λn. Lastly, we ob...In the paper, the α-order of the Laplace-Stieltjes Transform is introducedfirstly, then we get the relationship between α-order represented by the maximum modulus and α-order represented by A^*n, λn. Lastly, we obtain the relationship between type τrepresented by the maximum modulus and type τ represented by A^*n, λn.展开更多
In this paper, some new generalized R-KKM type theorems for generalized R-KKM mappings with finitely closed values and with finitely open values are established in noncompact topological spaces without any convexity s...In this paper, some new generalized R-KKM type theorems for generalized R-KKM mappings with finitely closed values and with finitely open values are established in noncompact topological spaces without any convexity structure under much weaker assumptions. As applications, some new minimax inequalities, saddle point theorem and equilibrium existence theorem for equilibrium problems with lower and upper bounds are established in general noncompact topological spaces. These theorems unify and generalize many known results in the literature.展开更多
A magnetohydrodynamic (MHD) power generator system involves several subjects such as magnetohydrodynamics, plasma physics, material science, and structure mechanics. Therefore, the performance of the MHD power gener...A magnetohydrodynamic (MHD) power generator system involves several subjects such as magnetohydrodynamics, plasma physics, material science, and structure mechanics. Therefore, the performance of the MHD power generator is affected by many factors, among which the load coefficient k is of great importance. This paper reveals the effect of some system parameters on the performance by three-dimensional (3D) numerical simulation for a Faraday type MHD power generator using He/Xe as working plasma. The results show that average electrical conductivity increases first and then decreases with the addition of magnetic field intensity. Electrical conductivity reaches the maximum value of 11.05 S/m, while the applied magnetic field strength is B = 1.75 T. When B 〉 3 T, the ionization rate along the midline well keeps stable, which indicates that the ionization rate and three-body recombination rate (three kinds of particles combining to two kinds of particles) are approximately equal, and the relatively stable plasma structure of the mainstream is preserved. Efficiency of power generation of the Faraday type channel increases with an increment of the load factor. However, enthalpy extraction first increases to a certain value, and then decreases with the load factor. The enthalpy extraction rate reaches the maximum when the load coefficient k equals 0.625, which is the best performance of the power generator channel with the maximum electricity production.展开更多
In this paper the generalized Mahler type number Mh(g;A,T) is defined, and in the case of multiplicatively dependent parameters gi, hi(1 ≤ i ≤ s) the algebraic independence of the numbers Mhi (gi; A, T)(1 ≤...In this paper the generalized Mahler type number Mh(g;A,T) is defined, and in the case of multiplicatively dependent parameters gi, hi(1 ≤ i ≤ s) the algebraic independence of the numbers Mhi (gi; A, T)(1 ≤ i ≤ s) is proved, where A and T are certain infinite sequences of non-negative integers and of positive integers, respectively. Furthermore, the algebraic independence result on values of a certain function connected with the generalized Mahler type number and its derivatives at algebraic numbers is also given.展开更多
We study the stochastic inventory problem with optimal (s,S) policies.In a finite horizon model with lost sales,we establish new lower and upper bounds of s and S.These bounds have structural implications for the op...We study the stochastic inventory problem with optimal (s,S) policies.In a finite horizon model with lost sales,we establish new lower and upper bounds of s and S.These bounds have structural implications for the optimal solutions.Consequently,when demand has a generalized phase type distribution,there are no more than a pre-determined number of minima.Similar bounds can also be found for the system where unsatisfied demand is backordered instead of lost sales.展开更多
文摘In the present paper, we study the polynomial approximation of analytic functions of several complex variables. The characterizations of generalized type of analytic functions of several complex variables have been obtained in terms of approximation and interpolation errors.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10472040 and 10372053), the Natural Science Foundation of Hunan Province, China (Grant No 03JJY3005), the Natural Science Foundation of Henan Province, China (Grant No 0311010900), the 0utstanding Young Talents Training Fund of Liaoning Province, China (Grant No 3040005) and the Foundation of Young Key Member of the teachers in Institutions of Higher Learning of Henan Province of China.
文摘Based on the invariance of differential equations under infinitesimal transformations of group, Lie symmetries, exact invariants, perturbation to the symmetries and adiabatic invariants in form of non-Noether for a Lagrange system are presented. Firstly, the exact invariants of generalized Hojman type led directly by Lie symmetries for a Lagrange system without perturbations are given. Then, on the basis of the concepts of Lie symmetries and higher order adiabatic invariants of a mechanical system, the perturbation of Lie symmetries for the system with the action of small disturbance is investigated, the adiabatic invariants of generalized Hojman type for the system are directly obtained, the conditions for existence of the adiabatic invariants and their forms are proved. Finally an example is presented to illustrate these results.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10372053 and 10472040, the Natural Science Foundation of Hunan Province under Grant No. 03JJY3005, the Scientific Research Foundation of Eduction Department of Hunan Province under Grant No. 02C033 and the 0utstanding Young Talents Training Fund of Liaoning Province under Grant No. 309005
文摘For a relativistic Birkhoffian system, the Lie symmetrical perturbation and adiabatic invariants of generalized Bojman type are studied under general infinitesimal transformations. On the basis of the invariance of relativistic Birkhotfian equations under general infinitesimal transformations,Lie symmetrical transformations of the system are constructed, which only depend on the Birkhoffian variables. The exact invariants in the form of generalized Hojman conserved quantities led by the Lie symmetries of relativistic Birkhoffian system without perturbations are given. Based on the definition of higher-order adiabatic invariants of a mechanical system, the perturbation of Lie symmetries for relativistic Birkhoffian system with the action of small disturbance is investigated, and a new type of adiabatic invariants of the system is obtained. In the end of the paper, an example is given to illustrate the application of the results.
文摘Simpler formulas are derived for one-range addition theorems for the integer and noninteger n generalized ex- ponential type orbitals, momentum space orbitals, and hyperspherical harmonics with hyperbolic cosine (GETO HC, GMSO HC, and GHSH HC) in position, momentum and four-dimensional spaces, respectively. The final results are expressed in terms of one-range addition theorems of complete orthonormal sets of Ca-exponential type orbitals, Ca- momentum space orbitals and za-hyperspherical harmonics. We notice that the one-range addition theorems for integer and noninteger n-Slater type orbitals and Gaussian type orbitals in position, momentum and four dimensional spaces are special cases of GETO HC, GMSO HC, and GHSH HC. The theorems presented can be useful in the accurate study of the electronic structure of atomic and molecular systems.
文摘This paper considers the initial boundary value problems with three types of the boundary conditions for nonlinear pseudo-hyperbolic equations of generalized nerve conduction type, using foe eigenfunction method, the conditions for which the solutions blow-up and die-out in the finile time are got.
文摘A family of Said-Bézier type generalized Ball (SBGB) bases and surfaces with a parameter H over triangular domain is introduced,which unifies Bézier surface and Said-Ball surface and includes several intermediate surfaces. To convert different bases and surfaces,the dual functionals of bases are presented. As an application of dual functionals,the subdivision formulas for surfaces are established.
文摘The existence of a global smooth solution for the initial value problem of generalized Kuramoto-Sivashinsky type equations have been obtained. Similarty siolutions and the structure of the traveling waves solution for the generalized KS equations are discussed and analysed by using the qualitative theory of ODE and Lie's infinitesimal transformation respectively.
文摘Solitons and bifurcations for the generalized Tzitzéica type equation are studied by using the theory of dynamical systems and Hamilton function. With the help of Maple and bifurcation theory of differential equations, the bifurcation parameter conditions and all the bifurcation phase portraits are obtained. Because the same energy value of the Hamiltonian function is corresponding to the same orbit, thus the periodic wave solutions, bright soliton and dark soliton solutions are defined.
文摘In this work, we prove the existence and uniqueness of the solution of the generalized Schrödinger type homogeneous model in the periodic distributional space P’. Furthermore, we prove that the solution depends continuously respect to the initial data in P’. Introducing a family of weakly continuous operators, we prove that this family is a group of operators in P’. Then, with this family of operators, we get a fine version of the existence and dependency continuous theorem obtained. Finally, we give some remarks derived from this study.
文摘In this paper, we investigate the existence, uniqueness and the asymptotic equiv- alence of a linear system and a perturbed system of differential equations with piecewise alternately advanced and retarded argument of generalized type (DEPCAG). This is based in the study of an equivalent integral equation with Cauchy and Green matrices type and in a solution of a DEPCAG integral inequality of Gronwall type. Several examples are also given to show the feasibility of results.
文摘Let C be a closed convex weakly Cauchy subset of a normed space X. Then we define a new {a,b,c} type nonexpansive and {a,b,c} type contraction mapping T from C into C. These types of mappings will be denoted respectively by {a,b,c}-ntype and {a,b,c}-ctype. We proved the following: 1. If T is {a,b,c}-ntype mapping, then inf{ || T(x)-x|| :x C C} =0, accordingly T has a unique fixed point. Moreover, any sequence {Xn}n∈NN in C with limn→∞||T(xn) - Xn|| = 0 has a subsequence strongly convergent to the unique fixed point of T. 2. If T is {a,b,c}-ctype mapping, then T has a unique fixed point. Moreover, for any x∈C the sequence of iterates {Tn (x)}n∈N has subsequence strongly convergent to the unique fixed point of T. This paper extends and generalizes some of the results given in [2,4, 7] and [13].
文摘The concept of FC-closed subset in FC-space without any linear structure was introduced. Then, the generalized KKM theorem is proved for FC-closed value mappings under some conditions. The FC-space in the theorem is the generalization of L-convex space and the condition of the mapping with finitely FC-closed value is weaker than that with finitely L-closed value.
文摘For a set S of real numbers, we introduce the concept of S-almost automorphic functions valued in a Banach space. It generalizes in particular the space of Z-almost automorphic functions. Considering the space of S-almost automorphic functions, we give sufficient conditions of the existence and uniqueness of almost automorphic solutions of a differential equation with a piecewise constant argument of generalized type. This is done using the Banach fixed point theorem.
基金supported by the NSFC(11971475)the Natural Science Foundation of Jiangsu Province(BK20230708)+2 种基金the Natural Science Foundation for the Universities in Jiangsu Province(23KJB110003)Geng's research was supported by the NSFC(11201041)the China Postdoctoral Science Foundation(2019M651765)。
文摘Fractional calculus has drawn more attentions of mathematicians and engineers in recent years.A lot of new fractional operators were used to handle various practical problems.In this article,we mainly study four new fractional operators,namely the CaputoFabrizio operator,the Atangana-Baleanu operator,the Sun-Hao-Zhang-Baleanu operator and the generalized Caputo type operator under the frame of the k-Prabhakar fractional integral operator.Usually,the theory of the k-Prabhakar fractional integral is regarded as a much broader than classical fractional operator.Here,we firstly give a series expansion of the k-Prabhakar fractional integral by means of the k-Riemann-Liouville integral.Then,a connection between the k-Prabhakar fractional integral and the four new fractional operators of the above mentioned was shown,respectively.In terms of the above analysis,we can obtain this a basic fact that it only needs to consider the k-Prabhakar fractional integral to cover these results from the four new fractional operators.
文摘In the present paper, we study the polynomial approximation of entire functions of several complex variables. The characterizations of generalized order and generalized type of entire functions of slow growth are obtained in terms of approximation and interpolation errors.
基金Supported by National Natural Science Foundation of China (Grant No. 11661044)。
文摘In the paper, the α-order of the Laplace-Stieltjes Transform is introducedfirstly, then we get the relationship between α-order represented by the maximum modulus and α-order represented by A^*n, λn. Lastly, we obtain the relationship between type τrepresented by the maximum modulus and type τ represented by A^*n, λn.
基金This project is supported by Natural Science Foundation of Sichuan Education Department of China(2003A081)SZD0406
文摘In this paper, some new generalized R-KKM type theorems for generalized R-KKM mappings with finitely closed values and with finitely open values are established in noncompact topological spaces without any convexity structure under much weaker assumptions. As applications, some new minimax inequalities, saddle point theorem and equilibrium existence theorem for equilibrium problems with lower and upper bounds are established in general noncompact topological spaces. These theorems unify and generalize many known results in the literature.
基金Project supported by the National Defense Basic Scientific Research Program of China(No.JCKY2013203B003)
文摘A magnetohydrodynamic (MHD) power generator system involves several subjects such as magnetohydrodynamics, plasma physics, material science, and structure mechanics. Therefore, the performance of the MHD power generator is affected by many factors, among which the load coefficient k is of great importance. This paper reveals the effect of some system parameters on the performance by three-dimensional (3D) numerical simulation for a Faraday type MHD power generator using He/Xe as working plasma. The results show that average electrical conductivity increases first and then decreases with the addition of magnetic field intensity. Electrical conductivity reaches the maximum value of 11.05 S/m, while the applied magnetic field strength is B = 1.75 T. When B 〉 3 T, the ionization rate along the midline well keeps stable, which indicates that the ionization rate and three-body recombination rate (three kinds of particles combining to two kinds of particles) are approximately equal, and the relatively stable plasma structure of the mainstream is preserved. Efficiency of power generation of the Faraday type channel increases with an increment of the load factor. However, enthalpy extraction first increases to a certain value, and then decreases with the load factor. The enthalpy extraction rate reaches the maximum when the load coefficient k equals 0.625, which is the best performance of the power generator channel with the maximum electricity production.
文摘In this paper the generalized Mahler type number Mh(g;A,T) is defined, and in the case of multiplicatively dependent parameters gi, hi(1 ≤ i ≤ s) the algebraic independence of the numbers Mhi (gi; A, T)(1 ≤ i ≤ s) is proved, where A and T are certain infinite sequences of non-negative integers and of positive integers, respectively. Furthermore, the algebraic independence result on values of a certain function connected with the generalized Mahler type number and its derivatives at algebraic numbers is also given.
基金supported by the Shanghai Excellent Junior Faculty Foundation
文摘We study the stochastic inventory problem with optimal (s,S) policies.In a finite horizon model with lost sales,we establish new lower and upper bounds of s and S.These bounds have structural implications for the optimal solutions.Consequently,when demand has a generalized phase type distribution,there are no more than a pre-determined number of minima.Similar bounds can also be found for the system where unsatisfied demand is backordered instead of lost sales.