This article overviews the design considerations and state-of-the-art of the ring voltage-controlled oscillator(VCO)-based phase-locked loops(PLLs)for clock generation in different applications.Partic-ularly,the objec...This article overviews the design considerations and state-of-the-art of the ring voltage-controlled oscillator(VCO)-based phase-locked loops(PLLs)for clock generation in different applications.Partic-ularly,the objective of the current work is to evaluate the required PLL performance among the fundamental metrics of power,jitter and area.An in-depth treatment of the mainstream PLL architectures and the associated design techniques enables them to be compared analyt-ically and benchmarked with respect to their figure-of-merit(FoM).The paper also summarizes the key concerns on the selection of dif-ferent circuit techniques to optimize the clock performance under dif-ferent scenarios.展开更多
A 35-130 MHz/300-360 MHz phase-locked loop frequency synthesizer for △-∑ analog-to-digital con- verter (ADC) in 65 nm CMOS is presented. The frequency synthesizer can work in low phase-noise mode (300-360 MHz) o...A 35-130 MHz/300-360 MHz phase-locked loop frequency synthesizer for △-∑ analog-to-digital con- verter (ADC) in 65 nm CMOS is presented. The frequency synthesizer can work in low phase-noise mode (300-360 MHz) or in low-power mode (35-130 MHz) to satisfy the ADC's requirements. To switch between these two modes, a high frequency GHz LC VCO followed by a divided-by-four frequency divider and a low frequency ring VCO followed by a divided-by-two frequency divider are integrated on-chip. The measured results show that the fre- quency synthesizer achieves a phase-noise of-132 dBc/Hz at 1 MHz offset and an integrated RMS jitter of 1.12 ps with 1.74 mW power consumption from a 1.2 V power supply in low phase-noise mode. In low-power mode, the frequency synthesizer achieves a phase-noise of-112 dBc/Hz at 1 MHz offset and an integrated RMS jitter of 7.23 ps with 0.92 mW power consumption from a 1.2 V power supply.展开更多
基金supported by the National Natural Science Foundation of China under Grant 62004028,62090041the Science Foundation of Sichuan under Grant 2022NSFSC0927.
文摘This article overviews the design considerations and state-of-the-art of the ring voltage-controlled oscillator(VCO)-based phase-locked loops(PLLs)for clock generation in different applications.Partic-ularly,the objective of the current work is to evaluate the required PLL performance among the fundamental metrics of power,jitter and area.An in-depth treatment of the mainstream PLL architectures and the associated design techniques enables them to be compared analyt-ically and benchmarked with respect to their figure-of-merit(FoM).The paper also summarizes the key concerns on the selection of dif-ferent circuit techniques to optimize the clock performance under dif-ferent scenarios.
文摘A 35-130 MHz/300-360 MHz phase-locked loop frequency synthesizer for △-∑ analog-to-digital con- verter (ADC) in 65 nm CMOS is presented. The frequency synthesizer can work in low phase-noise mode (300-360 MHz) or in low-power mode (35-130 MHz) to satisfy the ADC's requirements. To switch between these two modes, a high frequency GHz LC VCO followed by a divided-by-four frequency divider and a low frequency ring VCO followed by a divided-by-two frequency divider are integrated on-chip. The measured results show that the fre- quency synthesizer achieves a phase-noise of-132 dBc/Hz at 1 MHz offset and an integrated RMS jitter of 1.12 ps with 1.74 mW power consumption from a 1.2 V power supply in low phase-noise mode. In low-power mode, the frequency synthesizer achieves a phase-noise of-112 dBc/Hz at 1 MHz offset and an integrated RMS jitter of 7.23 ps with 0.92 mW power consumption from a 1.2 V power supply.