Biogenic coalbed gas,how it is generated and the geochemical characteristics of the gas are gaining global attention.The ways coalbed gas is generated,the status of research on the generation mechanism and the methods...Biogenic coalbed gas,how it is generated and the geochemical characteristics of the gas are gaining global attention.The ways coalbed gas is generated,the status of research on the generation mechanism and the methods of differentiating between biogenic gasses are discussed.The generation of biogenic coalbed methane is consistent with anaerobic fermentation theory.Commercial biogenic coalbed gas reservoirs are mainly generated by the process of CO2 reduction.The substrates used by the microbes living in the coal include organic compounds,CO2,H2 and acetate.The production ratio and quantity of biogenic coalbed methane depend on the exposed surface area,the solubility and permeability of the coal and the microbial concentration in the coal seam.It is generally believed that biogenic coalbed gas has a value for δ13C1<-5.5%,C1/C1+>0.95.The H isotope ratio is controlled by both the environment and the generation mechanism:typically δD1<-20%.Biogenic methane formed by CO2 reduction has more δD1 than that formed by acetate fermentation.展开更多
The extra heat generation in spin transport is usually interpreted in terms of the spin relaxation. Reformulating the heat generation rate, we find alternative current-force pairs without cross effects, which enable u...The extra heat generation in spin transport is usually interpreted in terms of the spin relaxation. Reformulating the heat generation rate, we find alternative current-force pairs without cross effects, which enable us to interpret the product of each pair as a distinct mechanism of heat generation. The results show that the spin-dependent part of the heat generation includes two terms. One is proportional to the square of the spin accumulation and arises from the spin relaxation. However, the other is proportional to the square of the spin-accumulation gradient and should be attributed to another mechanism, the spin diffusion. We illustrate the characteristics of the two mechanisms in a typical spin valve with a finite nonmagnetic spacer layer.展开更多
Effectively identifying and preventing the threat of Byzantine nodes to the security of distributed systems is a challenge in applying consortium chains.Therefore,this paper proposes a new consortium chain generation ...Effectively identifying and preventing the threat of Byzantine nodes to the security of distributed systems is a challenge in applying consortium chains.Therefore,this paper proposes a new consortium chain generation model,deeply analyzes the vulnerability of the consortium chain consensus based on the behavior of the nodes,and points out the effects of Byzantine node proportion and node state verification on the consensus process and system security.Furthermore,the normalized verification node aggregation index that represents the consensus ability of the consortium organization and the trust evaluation function of the verification node set is derived.When either of the two is lower than the threshold,the consortium institution or the verification node set members are dynamically adjusted.On this basis,an innovative consortium chain generation mechanism based on the Asynchronous Binary Byzantine Consensus Mechanism(ABBCM)is proposed.Based on the extended consortium chain consensus mechanism,a certain consensus value set can be combined into multiple proposals,which can realize crossdomain asynchronous message passing between multi-consortium chains without reducing the system’s security.In addition,experiments are carried out under four classical Byzantine Attack(BA)behaviors,BA1 to BA4.The results show that the proposed method can obtain better delay than the classical random Byzantine consensus algorithm Coin,effectively improving the consensus efficiency based on asynchronous message passing in the consortium chain and thus meeting the throughput of most Internet of Things(IoT)applications.展开更多
With the increasing attention paid to battery technology,the microscopic reaction mechanism and macroscopic heat transfer process of lithium-ion batteries have been further studied and understood from both academic an...With the increasing attention paid to battery technology,the microscopic reaction mechanism and macroscopic heat transfer process of lithium-ion batteries have been further studied and understood from both academic and industrial perspectives.Temperature,as one of the key parameters in the physical fra mework of batteries,affects the performa nce of the multi-physical fields within the battery,a nd its effective control is crucial.Since the heat generation in the battery is determined by the real-time operating conditions,the battery temperature is essentially controlled by the real-time heat dissipation conditions provided by the battery thermal management system.Conventional battery thermal management systems have basic temperature control capabilities for most conventional application scenarios.However,with the current development of la rge-scale,integrated,and intelligent battery technology,the adva ncement of battery thermal management technology will pay more attention to the effective control of battery temperature under sophisticated situations,such as high power and widely varied operating conditions.In this context,this paper presents the latest advances and representative research related to battery thermal management system.Firstly,starting from battery thermal profile,the mechanism of battery heat generation is discussed in detail.Secondly,the static characteristics of the traditional battery thermal management system are summarized.Then,considering the dynamic requirements of battery heat dissipation under complex operating conditions,the concept of adaptive battery thermal management system is proposed based on specific research cases.Finally,the main challenges for battery thermal management system in practice are identified,and potential future developments to overcome these challenges are presented and discussed.展开更多
Organic matter(OM)is intimately associated with minerals in clay-rich mudstones,leading to widespread organic-mineral interaction during hydrocarbon generation in argillaceous source rocks.What we are concerned is the...Organic matter(OM)is intimately associated with minerals in clay-rich mudstones,leading to widespread organic-mineral interaction during hydrocarbon generation in argillaceous source rocks.What we are concerned is the effects of the different mineral properties on hydrocarbon generation process and mechanism during mineral transformation.In this way,pyrolysis experiments with smectite-octadecanoic acid complexes(Sm-OA and Ex-Sm-OA)were conducted to analyze correlation of mineralogy and pyrolysis behaviors.Based on organicmineral interaction,hydrocarbon generation process was divided into three phases.At 200–300℃,collapse of smectite led to desorption of OM,resulting in high yield of resin and slight increase in saturates.Subsequently,enhanced smectite illitization at 350–450℃was accompanied with large amounts of saturates and a mere gaseous hydrocarbon.Featured by neoformed plagioclase,ankerite,and illite,500C saw plenty of asphaltene and methane-rich gaseous hydrocarbons,revealing cracking reactions of OM.Noteworthy is that saturated and gaseous hydrocarbons in Ex-Sm-OA were considerably more than that in Sm-OA during second and third phases.Quantitative calculation of hydrogen revealed organic hydrogen provided by cross-linking of OM could not balance hydrogen consumed by cracking reactions,but supply of inorganic hydrogen ensured cracking could readily occur and consequently greatly promoted hydrocarbon generation.Further investigating characteristics of mineralogy and pyrolytic products,as well as effects of solid acidity on hydrocarbon generation,we concluded desorption of OM and decarboxylation promoted by Lewis acid were dominated at 200–300C,resulting in lowdegree hydrocarbon generation.While high yield of saturated and gaseous hydrocarbons in second and third phases,together with occurrence of ankerite,indicated predominance of decarboxylation and hydrogenation promoted by Lewis and Brønsted acid,respectively.Variations in organic-mineral interactions indicated(1)the controls of mineral transformation on hydrocarbon generation process and mechanism include desorption,decarboxylation,and hydrogenation reactions;(2)clay minerals acted as reactants evolving together with OM rather than catalysts.These findings are profoundly significant for understanding the hydrocarbon generation mechanisms,organic-inorganic interactions,and carbon cycle.展开更多
The current researches on the tooth surface mathematical equations and the theory of gearing mainly pay attention to the ordinary type worm gear set(e.g., ZN, ZA, or ZK). The research of forming mechanism and three-...The current researches on the tooth surface mathematical equations and the theory of gearing mainly pay attention to the ordinary type worm gear set(e.g., ZN, ZA, or ZK). The research of forming mechanism and three-dimensional modeling method for the double pitch worm gear set is not enough. So there are some difficulties in mathematical model deducing and geometry modeling of double pitch ZN-type worm gear set based on generation mechanism. In order to establish the mathematical model and the precise geometric model of double pitch ZN-type worm gear set, the structural characteristics and generation mechanism of the double pitch ZN-type worm gear set are investigated. Mathematical model of the ZN-type worm gear set is derived based on its generation mechanism and the theory of gearing. According to the mathematical model of the worm gear set which has been developed, a geometry modeling method of the double pitch ZN-type worm and worm gear is presented. Furthermore, a geometrical precision calculate method is proposed to evaluate the geometrical quality of the double pitch worm gear set. As a result, the maximum error is less than 6′10–4 mm in magnitude, thus the model of the double pitch ZN-type worm gear set is available to meet the requirements of finite element analysis and engineering application. The derived mathematical model and the proposed geometrical modeling method are helpful to guiding the design, manufacture and contact analysis of the worm gear set.展开更多
A preliminary field-based investigation was undertaken in a small(<10 km^(2))river valley located in the mountainous Jura region of northwest Switzerland.The aims of the work were to assess sediment generation and ...A preliminary field-based investigation was undertaken in a small(<10 km^(2))river valley located in the mountainous Jura region of northwest Switzerland.The aims of the work were to assess sediment generation and annual sediment transport rates by tree throw on forested hillslopes,and to document surface hydrology characteristics on four fresh soil mounds associated with recent tree throws over a 24-day monitoring period.For the soil mounds,average sediment recovery ranged from 7.7-28.2 g(dry weight),equivalent to a suspended sediment concentration of 145.2-327.8 g L^(-1),and runoff coefficients ranged from 1.0%-4.2%.Based on a soil bulk density value of 1,044 kg m^(-3),upslope runoff generation areas were denuded by an average 0.14 mm by the end of the 24-day monitoring period,representing an erosion rate equivalent to 2.1 mm yr^(-1).A ca.50 cm high soil mound could therefore feasibly persist for around 200-250 years.For tree throw work,the dimensions of 215 individual tree throws were measured and their locations mapped in 12 separate locations along the river valley representing a cumulative area equivalent to 5.3 ha(av.density,43 per ha).Tree throws generated a total of 20.1 m^(3) of fine-sediment(<2 mm diameter),or the equivalent of 3.8×10^(-4) m^(3) m^(-2).The process of tree throw was originally attributed to two extreme weather events that occurred in west and central Europe in late December 1999.Taking the 18-year period since both storms,this represents an annual sediment transport rate of 2.7×10^(-5) m^(3) m^(-1) yr^(-1).Exploring the relationship with wind on fall direction,65.5%of tree throws(143)generally fell in a downslope direction irrespective of hillslope aspect on which they were located.This infers that individual storms may not have been responsible for the majority of tree throws,but instead,could be associated with root failure.Given the high density of tree throws and their relative maturity(average age 41 years),we hypothesise that once trees attain a certain age in this river valley,their physiognomy(i.e.height,mass and centre of gravity)compromises their ability to remain securely anchored.We tentatively attribute this possibility to the presence of bedrock close to the surface,and to the shallow soil profile overlaying steep hillslopes.展开更多
The exposed surface of the dry salt lake basin contains a large number of extremely fine lightweight saline-alkali(mixed)dust and clay dust.It is extremely easy to dust and since saline-alkali lake is low-lying and it...The exposed surface of the dry salt lake basin contains a large number of extremely fine lightweight saline-alkali(mixed)dust and clay dust.It is extremely easy to dust and since saline-alkali lake is low-lying and its temperature展开更多
The overproduction of free radicals is the main reason for the peroxidation damage, metabolic disturbance and antioxidant imbalance in animals. This paper summarized the types and generation mechanism of intracellular...The overproduction of free radicals is the main reason for the peroxidation damage, metabolic disturbance and antioxidant imbalance in animals. This paper summarized the types and generation mechanism of intracellular free radicals and clarified the sources of free radicals in skeletal muscles and digestive tracts of animals.展开更多
Nanotechnology-inspired small-sized water-enabled electricity generation(WEG)has sparked widespread research interest,especially when applied as an electricity source for off-grid low-power electronic equipment and sy...Nanotechnology-inspired small-sized water-enabled electricity generation(WEG)has sparked widespread research interest,especially when applied as an electricity source for off-grid low-power electronic equipment and systems.Currently,WEG encompasses a wide range of physical phenomena,generator structures,and power generation environments.However,a systematic framework to clearly describe the connections and differences between these technologies is unavailable.In this review,a comprehensive overview of generator technologies and the typical mechanisms for harvesting water energy is provided.Considering the different roles of water inWEG processes,the related technologies are presented as two different scenarios.Moreover,a detailed analysis of the electrical potential formation in each WEG process is presented,and their similarities and differences are elucidated.Furthermore,a comprehensive compilation of advanced generator architectures and system designs based on hydrological cycle processes is presented,along with their respective energy efficiencies.These nanotechnology-inspired small-sized WEG devices show considerable potential for applications in the Internet of Things ecosystem(i.e.,microelectronic devices,integrated circuits,and smart clothing).Finally,the prospects and future challenges of WEG devices are also summarized.展开更多
In gas storage or high-pressure gas wells,annular pressure is an unavoidable threat to safe,long-term resource production.The more complex situation,however,is multiple annular pressure,which means annular pressure ha...In gas storage or high-pressure gas wells,annular pressure is an unavoidable threat to safe,long-term resource production.The more complex situation,however,is multiple annular pressure,which means annular pressure happens in not only one annulus but two or more.Such a situation brings serious challenges to the identification of well integrity.However,few researches analyze the phenomenon of multiple annular pressure.Therefore,this paper studies the mechanism of multi-annular pressure to provide a foundation for its prevention and diagnosis.Firstly,the multi-annular pressure is classified according to the mechanism and field data.Then the failure mechanism and function of the wellbore safety barriers in the process of passage formation are analyzed.Finally,some suggestions are put forward for identifying and controlling multi-annular pressure.The results show that gas storage wells and high-pressure gas wells have the conditions to generate pressure channels,which leads to the expansion of annular pressure from a single annulus to multiple annuli.The pressure channel is composed of the tubing string,casing string,and a cement mantle,and the failures among the three have causal and hierarchical relationships.According to the channel direction,it can be divided into two types:tubing-casing annulus to casing annulus and casing annulus to the tubing-casing annulus,of which the former is more harmful.Some measures can be considered to prevent pressure channeling,including improvement of cementing quality,revision of maximum allowable annular pressure,and suitable frequency of pressure relief.展开更多
The south-western Ordos Basin is rich in low-middle rank coalbed methane(CBM)resources;while the geochemical characteristics and genetic mechanism of CBM are not clear.Herein,according to geological and geochemical te...The south-western Ordos Basin is rich in low-middle rank coalbed methane(CBM)resources;while the geochemical characteristics and genetic mechanism of CBM are not clear.Herein,according to geological and geochemical test data from gas and coal seam water from CBM wells in Bingchang,Jiaoxun,Huangling,Yonglong,and Longdong minging areas,we systematically studied the geochemical characteristics,generation,and evolution mechanism of CBM in Jurassic Yan’an Formation in the south-western Ordos Basin.The results show that the CH4 content of whole gas is in the range of 42.01%-94.72%.The distribution ranges of theδ^(13)C-CH_(4)value is−87.2‰to−32.5‰,indicating diverse sources of thermogenic gas and biogenic gas.The microbial methane is mainly generated by a CO_(2)reduction pathway,with certain methyl-type fermentation spots.Theδ^(13)C-CH_(4)has a positive correlation with burial depth,indicating the obvious fractionation of CBM.The relationship between the genetic types and burial depth of the CBM reservoir indicates that the favorable depth of secondary biogenic gas is less than 660 m.The Late Cretaceous Yanshanian Movement led to the uplift of the Ordos Basin,and a large amount of thermogenic gas escaped from the edge of the basin.Since the Paleogene Period,the coal reservoir in the basin margin has received recharge from atmospheric precipitation,which is favorable for the formation of secondary biogenic methane.The deep area,generally under 1000 m,mainly contains residual thermogenic gas.The intermediate transition zone is mixed gas.Constrained by the tectonic background,the genetic types of CBM in different mining areas are controlled by the coupling of burial depth,coal rank,and hydrogeological conditions.The Binchang mining area contains biogenic gas,and the development of CBM has achieved initial success,indicating that similar blocks with biogenic gas formation conditions is key to the efficient development of CBM.The research results provide a scientific basis for searching for favorable exploration areas of CBM in the south-western Ordos Basin.展开更多
Tailored surface textures at the micro- or nanoscale dimensions are widely used to get required functional performances. Rotary ultrasonic texturing (RUT) technique has been proved to be capable of fabricating perio...Tailored surface textures at the micro- or nanoscale dimensions are widely used to get required functional performances. Rotary ultrasonic texturing (RUT) technique has been proved to be capable of fabricating periodic micro- and nanostructures. In the present study, diamond tools with geometrically defined cutting edges were designed for fabricating different types of tailored surface textures using the RUT method. Surface generation mechanisms and machinable structures of the RUT process are analyzed and simulated with a 3D-CAD program. Textured surfaces generated by using a triangular pyramid cutting tip are constructed. Different textural patterns from several micrometers to several tens of micrometers with few burrs were successfully fabricated, which proved that tools with a proper two-rake-face design are capable of removing cutting chips efficiently along a sinusoidal cutting locus in the RUT process. Technical applications of the textured surfaces are also discussed. Wetting properties of textured aluminum surfaces were evaluated by combining the test of surface roughness features. The results show that the real surface area of the textured aluminum surfaces almost doubled by comparing with that of a flat surface, and anisotropic wetting properties were obtained due to the obvious directional textural features.展开更多
This study presents an analysis of the quasi-16-day wave(Q16DW)at three stations in the middle latitudes by using a meteor radar chain in conjunction with Aura Microwave Limb Sounder temperature data and MERRA2(Modern...This study presents an analysis of the quasi-16-day wave(Q16DW)at three stations in the middle latitudes by using a meteor radar chain in conjunction with Aura Microwave Limb Sounder temperature data and MERRA2(Modern-Era Retrospective Analysis for Research and Applications,Version 2)reanalysis data from 2008 to 2017.The radar chain consists of three meteor radar stations located at Mohe(MH,53.5°N,122.3°E),Beijing(BJ,40.3°N,116.2°E),and Wuhan(WH,30.5°N,114.6°E).The Q16DW wave exhibits similar seasonal variation in the neutral wind and temperature,and the Q16DW amplitude is generally strong during winter and weak around summer.The Q16DW at BJ was found to have secondary enhancement around September in the zonal wind,which is rarely reported at similar latitudes.The latitudinal variations of the Q16DW in the neutral wind and temperature are quite different.The Q16DW at BJ is the most prominent in both neutral wind components among the three stations and the Q16DW amplitudes at MH and WH are comparable,whereas the wave amplitude in temperature decreases with decreasing latitude.The quasi-geostrophic refractive index squared at the three stations in the period from 2008 to 2017 was revealed.The results indicate that the Q16DW in the mesosphere and lower thermosphere(MLT)at MH has a limited contribution from the lower atmosphere.Around March and October,the Q16DW in the troposphere at BJ can propagate upward into the MLT region,whereas at WH,the contribution to the Q16DW in the MLT region is largely from the mesosphere.展开更多
The filter capacitor stack is one of the main acoustic noise sources in high-voltage DC(HVDC) converter stations.As HVDC systems are built more and more recently,it is significant to research the audible noise of filt...The filter capacitor stack is one of the main acoustic noise sources in high-voltage DC(HVDC) converter stations.As HVDC systems are built more and more recently,it is significant to research the audible noise of filter capacitors.In this paper,the current situation of research on vibration and audible noise of filter capacitors in HVDC converter stations,which is departed into three parts—generation mechanism,prediction methods,and reduction measures,is presented and the research achievements are discussed.Scholars have built the model that the alternating electric force caused by the voltage conduces to the vibration,which propagates to the enclosure and radiates audible noise.As a result,the parts contributing most to the generation of audible noise are the top and the bottom of capacitors. In the noise level prediction respect,several methods have been prospected including impact hammer,sweep frequency, impact current,monopole and Kirchhoff formula method,which are suitable for single capacitors or capacitors stacks individually.However,the sweep frequency method is restricted by experiment condition,and the impact current method needs further research and verified.On the other hand,CIGRE WG14.26 provides three sound reduction measures,but all of them are not so practicable,while MPP absorber and compressible space absorber prospected by Dr.Wu Peng are proved to be effective.The sound barriers are also considered by scholars,and the acoustic directivity performance of capacitors is also researched.Besides,the developing direction of each research field is prospected in corresponding part.展开更多
The purpose of this study is to investigate the entire evolution process of shales with various total organic contents(TOC)in order to build models for quantitative evaluation of oil and gas yields and establish metho...The purpose of this study is to investigate the entire evolution process of shales with various total organic contents(TOC)in order to build models for quantitative evaluation of oil and gas yields and establish methods for assessing recoverable oil and gas resources from in-situ conversion of organic matters in shale.Thermal simulation experiments under in-situ conversion conditions were conducted on Chang 7_(3) shales from the Ordos Basin in a semi-open system with large capacity.The results showed that TOC and R_(o) were the key factors affecting the in-situ transformation potential of shale.The remaining oil and gas yields increased linearly with TOC but inconsistently with R_(o).R_(o) ranged 0.75%—1.25%and 1.05%—2.3%,respectively,corresponding to the main oil generation stage and gas generation stage of shale in-situ transformation.Thus a model to evaluate the remaining oil/gas yield with TOC and R_(o) was obtained.The TOC of shale suitable for in-situ conversion should be greater than 6%,whereas its R_(o) should be less than 1.0%.Shales with 0.75%(R_(o))could obtain the best economic benefit.The results provided a theoretical basis and evaluation methodology for predicting the hydrocarbon resources from in-situ conversion of shale and for the identification of the optimum“sweet spots”.The assessment of the Chang 7_(3) shale in the Ordos Basin indicated that the recoverable oil and gas resources from in-situ conversion of organic matters in shale are substantial,with oil and gas resources reaching approximately 450×10^(8) t and 30×10^(12)m^(3),respectively,from an area of 4.27×10^(4) km^(2).展开更多
Some crustal-deformation data related to the Ms8.0 Wenchuan in 2008, was described and a model that is capable of explaining the observed deformation features is presented. The data include : pre-earthquake uplift in...Some crustal-deformation data related to the Ms8.0 Wenchuan in 2008, was described and a model that is capable of explaining the observed deformation features is presented. The data include : pre-earthquake uplift in an area south of the epicenter obtained by repeated-leveling measurements ; pre-earthquake horizontal deformation by GPS observation during two periods in Sichuan-Yunnan area;vertical deformation along a short cross-fault leveling line in the epicenter area; and co-seismic near-field vertical and horizontal crustal-move- ment data by GPS. The model is basically "elastic-rebound", but involves a zone between two local faults that was squeezed out at the time of earthquake. :展开更多
Intermittent convective transport at the edge and in the scrape-off layer (SOL) of EAST was investigated by using fast reciprocating Langmuir probe. Holes, as part of plasma structures, were detected for the first t...Intermittent convective transport at the edge and in the scrape-off layer (SOL) of EAST was investigated by using fast reciprocating Langmuir probe. Holes, as part of plasma structures, were detected for the first time inside the shear layer. The amplitude probability distribution function of the turbulence is strongly skewed, with positive skewed events ("blobs") prevailing in the SOL region and negative skewed events ("holes") dominant inside the shear layer. The statistical properties coincide with previous observations from JET. The generation mechanism of blobs and holes is also discussed. In addition burst structure and dynamics character of them are also presented.展开更多
In the satellite synthetic aperture radar(SAR) images of the Bohai Sea and Huanghai Sea,the authors observe sea surface imprints of wave-like patterns with an average wavelength of 3.8 km.Comparing SAR observations ...In the satellite synthetic aperture radar(SAR) images of the Bohai Sea and Huanghai Sea,the authors observe sea surface imprints of wave-like patterns with an average wavelength of 3.8 km.Comparing SAR observations with sea surface wind fields and surface weather maps,the authors find that the occurrence of the wave-like phenomena is associated with the passing of atmospheric front.The authors define the waves as atmospheric frontal gravity waves.The dynamical parameters of the wave packets are derived from statistics of 9 satellite SAR images obtained from 2002 to 2008.A two-dimensional linear physical wave model is used to analyze the generation mechanism of the waves.The atmospheric frontal wave induced wind variation across the frontal wave packet is compared with wind retrievals from the SAR images.The CMOD-5(C-band scatterometer ocean geophysical model function) is used for SAR wind retrievals VV(transmitted vertical and received vertical) for ENVISAT and HH(transmitted horizontally and received horizontally) for RADARSAT-1.A reasonable agreement between the analytical solution and the SAR observation is reached.This new SAR frontal wave observation adds to the school of SAR observations of sea surface imprints of AGWs including island lee waves,coastal lee waves,and upstream Atmospheric Gravity Waves(AGW).展开更多
The Three Gorges region in China was basically a geohazard-prone area prior to construction of the Three Gorges Reservoir (TGR). After construction of the TGR, the water level was raised from 70 m to 175 m above sea...The Three Gorges region in China was basically a geohazard-prone area prior to construction of the Three Gorges Reservoir (TGR). After construction of the TGR, the water level was raised from 70 m to 175 m above sea level (ASL), and annual reservoir regulation has caused a 30-m water level difference after impoundment of the TGR since September 2008. This paper first presents the spatiotemporal distribution of landslides in six periods of 175 m ASL trial impoundments from 2008 to 2014. The results show that the number of landslides sharply decreased from 273 at the initial stage to less than ten at the second stage of impoundment. Based on this, the reservoir-induced landslides in the TGR region can be roughly classified into five failure patterns, i.e. accumulation landslide, dip-slope landslide, reversed bedding landslide, rockfall, and karst breccia landslide. The accumulation landslides and dip-slope landslides account for more than 90%. Taking the Shuping accumulation landslide (a sliding mass volume of 20.7 × 106 m^3) in Zigui County and the Outang dip-slope landslide (a sliding mass volume of about 90 × 106 m^3) in Fengjie County as two typical cases, the mechanisms of reactivation of the two landslides are analyzed. The monitoring data and factor of safety (FOS) calculation show that the accumulation landslide is dominated by water level variation in the reservoir as most part of the mass body is under 175 m ASL, and the dip-slope landslide is controlled by the coupling effect of reservoir water level variation and precipitation as an extensive recharge area of rainfall from the rear and the front mass is below 175 m ASL. The characteristics of landslide-induced impulsive wave hazards after and before reservoir impoundment are studied, and the probability of occurrence of a landslide-induced impulsive wave hazard has increased in the reservoir region. Simulation results of the Ganjingzi landslide in Wushan County indicate the strong relationship between landslide-induced surge and water variation with high potential risk to shipping and residential areas. Regarding reservoir regulation in TGR when using a single index, i.e. 1-d water level variation, water resources are not well utilized, and there is also potential risk of disasters since 2008. In addition, various indices such as 1-d, 5-d, and 10-d water level variations are proposed for reservoir regulation. Finally, taking reservoir-induced landslides in June 2015 for example, the feasibility of the optimizing indices of water level variations is verified.展开更多
基金provided by the National Natural Science Foundation of China (No.40730422) is gratefully acknowledged
文摘Biogenic coalbed gas,how it is generated and the geochemical characteristics of the gas are gaining global attention.The ways coalbed gas is generated,the status of research on the generation mechanism and the methods of differentiating between biogenic gasses are discussed.The generation of biogenic coalbed methane is consistent with anaerobic fermentation theory.Commercial biogenic coalbed gas reservoirs are mainly generated by the process of CO2 reduction.The substrates used by the microbes living in the coal include organic compounds,CO2,H2 and acetate.The production ratio and quantity of biogenic coalbed methane depend on the exposed surface area,the solubility and permeability of the coal and the microbial concentration in the coal seam.It is generally believed that biogenic coalbed gas has a value for δ13C1<-5.5%,C1/C1+>0.95.The H isotope ratio is controlled by both the environment and the generation mechanism:typically δD1<-20%.Biogenic methane formed by CO2 reduction has more δD1 than that formed by acetate fermentation.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11404013,11605003,61405003,11174020 and 11474012the Scientific Research Project of Beijing Educational Committee under Grant No KM201510011002the 2016 Graduate Research Program of Beijing Technology and Business University
文摘The extra heat generation in spin transport is usually interpreted in terms of the spin relaxation. Reformulating the heat generation rate, we find alternative current-force pairs without cross effects, which enable us to interpret the product of each pair as a distinct mechanism of heat generation. The results show that the spin-dependent part of the heat generation includes two terms. One is proportional to the square of the spin accumulation and arises from the spin relaxation. However, the other is proportional to the square of the spin-accumulation gradient and should be attributed to another mechanism, the spin diffusion. We illustrate the characteristics of the two mechanisms in a typical spin valve with a finite nonmagnetic spacer layer.
基金supported by Henan University Science and Technology Innovation Talent Support Program(23HASTIT029)the National Natural Science Foundation of China(61902447)+3 种基金Tianjin Natural Science Foundation Key Project(22JCZDJC00600)Research Project of Humanities and Social Sciences in Universities of Henan Province(2024-ZDJH-061)Key Scientific Research Projects of Colleges and Universities in Henan Province(23A520054)Henan Science and Technology Research Project(232102210124).
文摘Effectively identifying and preventing the threat of Byzantine nodes to the security of distributed systems is a challenge in applying consortium chains.Therefore,this paper proposes a new consortium chain generation model,deeply analyzes the vulnerability of the consortium chain consensus based on the behavior of the nodes,and points out the effects of Byzantine node proportion and node state verification on the consensus process and system security.Furthermore,the normalized verification node aggregation index that represents the consensus ability of the consortium organization and the trust evaluation function of the verification node set is derived.When either of the two is lower than the threshold,the consortium institution or the verification node set members are dynamically adjusted.On this basis,an innovative consortium chain generation mechanism based on the Asynchronous Binary Byzantine Consensus Mechanism(ABBCM)is proposed.Based on the extended consortium chain consensus mechanism,a certain consensus value set can be combined into multiple proposals,which can realize crossdomain asynchronous message passing between multi-consortium chains without reducing the system’s security.In addition,experiments are carried out under four classical Byzantine Attack(BA)behaviors,BA1 to BA4.The results show that the proposed method can obtain better delay than the classical random Byzantine consensus algorithm Coin,effectively improving the consensus efficiency based on asynchronous message passing in the consortium chain and thus meeting the throughput of most Internet of Things(IoT)applications.
基金supported by the National Natural Science Foundation of China (No.62373224,62333013,and U23A20327)。
文摘With the increasing attention paid to battery technology,the microscopic reaction mechanism and macroscopic heat transfer process of lithium-ion batteries have been further studied and understood from both academic and industrial perspectives.Temperature,as one of the key parameters in the physical fra mework of batteries,affects the performa nce of the multi-physical fields within the battery,a nd its effective control is crucial.Since the heat generation in the battery is determined by the real-time operating conditions,the battery temperature is essentially controlled by the real-time heat dissipation conditions provided by the battery thermal management system.Conventional battery thermal management systems have basic temperature control capabilities for most conventional application scenarios.However,with the current development of la rge-scale,integrated,and intelligent battery technology,the adva ncement of battery thermal management technology will pay more attention to the effective control of battery temperature under sophisticated situations,such as high power and widely varied operating conditions.In this context,this paper presents the latest advances and representative research related to battery thermal management system.Firstly,starting from battery thermal profile,the mechanism of battery heat generation is discussed in detail.Secondly,the static characteristics of the traditional battery thermal management system are summarized.Then,considering the dynamic requirements of battery heat dissipation under complex operating conditions,the concept of adaptive battery thermal management system is proposed based on specific research cases.Finally,the main challenges for battery thermal management system in practice are identified,and potential future developments to overcome these challenges are presented and discussed.
基金the National Natural Science Foundation of China(Grant Nos.41672115 and 41972126)the National Oil and Gas Special Fund(Grant No.2016ZX05006001-003).
文摘Organic matter(OM)is intimately associated with minerals in clay-rich mudstones,leading to widespread organic-mineral interaction during hydrocarbon generation in argillaceous source rocks.What we are concerned is the effects of the different mineral properties on hydrocarbon generation process and mechanism during mineral transformation.In this way,pyrolysis experiments with smectite-octadecanoic acid complexes(Sm-OA and Ex-Sm-OA)were conducted to analyze correlation of mineralogy and pyrolysis behaviors.Based on organicmineral interaction,hydrocarbon generation process was divided into three phases.At 200–300℃,collapse of smectite led to desorption of OM,resulting in high yield of resin and slight increase in saturates.Subsequently,enhanced smectite illitization at 350–450℃was accompanied with large amounts of saturates and a mere gaseous hydrocarbon.Featured by neoformed plagioclase,ankerite,and illite,500C saw plenty of asphaltene and methane-rich gaseous hydrocarbons,revealing cracking reactions of OM.Noteworthy is that saturated and gaseous hydrocarbons in Ex-Sm-OA were considerably more than that in Sm-OA during second and third phases.Quantitative calculation of hydrogen revealed organic hydrogen provided by cross-linking of OM could not balance hydrogen consumed by cracking reactions,but supply of inorganic hydrogen ensured cracking could readily occur and consequently greatly promoted hydrocarbon generation.Further investigating characteristics of mineralogy and pyrolytic products,as well as effects of solid acidity on hydrocarbon generation,we concluded desorption of OM and decarboxylation promoted by Lewis acid were dominated at 200–300C,resulting in lowdegree hydrocarbon generation.While high yield of saturated and gaseous hydrocarbons in second and third phases,together with occurrence of ankerite,indicated predominance of decarboxylation and hydrogenation promoted by Lewis and Brønsted acid,respectively.Variations in organic-mineral interactions indicated(1)the controls of mineral transformation on hydrocarbon generation process and mechanism include desorption,decarboxylation,and hydrogenation reactions;(2)clay minerals acted as reactants evolving together with OM rather than catalysts.These findings are profoundly significant for understanding the hydrocarbon generation mechanisms,organic-inorganic interactions,and carbon cycle.
基金Supported by Major National Basic Research Program of China(973Program,Grant No.2011CB013400-05)PhD Programs Foundation of Ministry of Education of China(Grant No.20110191110005)
文摘The current researches on the tooth surface mathematical equations and the theory of gearing mainly pay attention to the ordinary type worm gear set(e.g., ZN, ZA, or ZK). The research of forming mechanism and three-dimensional modeling method for the double pitch worm gear set is not enough. So there are some difficulties in mathematical model deducing and geometry modeling of double pitch ZN-type worm gear set based on generation mechanism. In order to establish the mathematical model and the precise geometric model of double pitch ZN-type worm gear set, the structural characteristics and generation mechanism of the double pitch ZN-type worm gear set are investigated. Mathematical model of the ZN-type worm gear set is derived based on its generation mechanism and the theory of gearing. According to the mathematical model of the worm gear set which has been developed, a geometry modeling method of the double pitch ZN-type worm and worm gear is presented. Furthermore, a geometrical precision calculate method is proposed to evaluate the geometrical quality of the double pitch worm gear set. As a result, the maximum error is less than 6′10–4 mm in magnitude, thus the model of the double pitch ZN-type worm gear set is available to meet the requirements of finite element analysis and engineering application. The derived mathematical model and the proposed geometrical modeling method are helpful to guiding the design, manufacture and contact analysis of the worm gear set.
基金funded by the Physical Geography and Environmental Change Research Group,Department of Environmental Sciences,University of Basel。
文摘A preliminary field-based investigation was undertaken in a small(<10 km^(2))river valley located in the mountainous Jura region of northwest Switzerland.The aims of the work were to assess sediment generation and annual sediment transport rates by tree throw on forested hillslopes,and to document surface hydrology characteristics on four fresh soil mounds associated with recent tree throws over a 24-day monitoring period.For the soil mounds,average sediment recovery ranged from 7.7-28.2 g(dry weight),equivalent to a suspended sediment concentration of 145.2-327.8 g L^(-1),and runoff coefficients ranged from 1.0%-4.2%.Based on a soil bulk density value of 1,044 kg m^(-3),upslope runoff generation areas were denuded by an average 0.14 mm by the end of the 24-day monitoring period,representing an erosion rate equivalent to 2.1 mm yr^(-1).A ca.50 cm high soil mound could therefore feasibly persist for around 200-250 years.For tree throw work,the dimensions of 215 individual tree throws were measured and their locations mapped in 12 separate locations along the river valley representing a cumulative area equivalent to 5.3 ha(av.density,43 per ha).Tree throws generated a total of 20.1 m^(3) of fine-sediment(<2 mm diameter),or the equivalent of 3.8×10^(-4) m^(3) m^(-2).The process of tree throw was originally attributed to two extreme weather events that occurred in west and central Europe in late December 1999.Taking the 18-year period since both storms,this represents an annual sediment transport rate of 2.7×10^(-5) m^(3) m^(-1) yr^(-1).Exploring the relationship with wind on fall direction,65.5%of tree throws(143)generally fell in a downslope direction irrespective of hillslope aspect on which they were located.This infers that individual storms may not have been responsible for the majority of tree throws,but instead,could be associated with root failure.Given the high density of tree throws and their relative maturity(average age 41 years),we hypothesise that once trees attain a certain age in this river valley,their physiognomy(i.e.height,mass and centre of gravity)compromises their ability to remain securely anchored.We tentatively attribute this possibility to the presence of bedrock close to the surface,and to the shallow soil profile overlaying steep hillslopes.
文摘The exposed surface of the dry salt lake basin contains a large number of extremely fine lightweight saline-alkali(mixed)dust and clay dust.It is extremely easy to dust and since saline-alkali lake is low-lying and its temperature
基金Supported by Natural Science Foundation of Hubei Province(2013CFA100)National Natural Science Foundation of China(31472117)
文摘The overproduction of free radicals is the main reason for the peroxidation damage, metabolic disturbance and antioxidant imbalance in animals. This paper summarized the types and generation mechanism of intracellular free radicals and clarified the sources of free radicals in skeletal muscles and digestive tracts of animals.
基金supported by the Fundamental Research Funds for Central Universities of Hohai University(B220203014)Postgraduate Research&Innovation Program of Jiangsu Province(4200261601)+3 种基金National Natural Science Foundation of China(51909066)the Zhejiang Ocean University Talent Introduction Research Fund(No.JX6311103723)the ES Program(via Nagoya University)the JST-ERATO Yamauchi Materials Space Tectonics Project(JPMJER2003).
文摘Nanotechnology-inspired small-sized water-enabled electricity generation(WEG)has sparked widespread research interest,especially when applied as an electricity source for off-grid low-power electronic equipment and systems.Currently,WEG encompasses a wide range of physical phenomena,generator structures,and power generation environments.However,a systematic framework to clearly describe the connections and differences between these technologies is unavailable.In this review,a comprehensive overview of generator technologies and the typical mechanisms for harvesting water energy is provided.Considering the different roles of water inWEG processes,the related technologies are presented as two different scenarios.Moreover,a detailed analysis of the electrical potential formation in each WEG process is presented,and their similarities and differences are elucidated.Furthermore,a comprehensive compilation of advanced generator architectures and system designs based on hydrological cycle processes is presented,along with their respective energy efficiencies.These nanotechnology-inspired small-sized WEG devices show considerable potential for applications in the Internet of Things ecosystem(i.e.,microelectronic devices,integrated circuits,and smart clothing).Finally,the prospects and future challenges of WEG devices are also summarized.
基金supported by CNPC Forward-Looking Basic Strategic Technology Research Projects(Nos.2021DJ6504,2021DJ6501,2021DJ6502&2021DJ0806)received by Bo Zhang,CNPC Science Technology Major Project(2021ZZ03)received by Bo Zhang.
文摘In gas storage or high-pressure gas wells,annular pressure is an unavoidable threat to safe,long-term resource production.The more complex situation,however,is multiple annular pressure,which means annular pressure happens in not only one annulus but two or more.Such a situation brings serious challenges to the identification of well integrity.However,few researches analyze the phenomenon of multiple annular pressure.Therefore,this paper studies the mechanism of multi-annular pressure to provide a foundation for its prevention and diagnosis.Firstly,the multi-annular pressure is classified according to the mechanism and field data.Then the failure mechanism and function of the wellbore safety barriers in the process of passage formation are analyzed.Finally,some suggestions are put forward for identifying and controlling multi-annular pressure.The results show that gas storage wells and high-pressure gas wells have the conditions to generate pressure channels,which leads to the expansion of annular pressure from a single annulus to multiple annuli.The pressure channel is composed of the tubing string,casing string,and a cement mantle,and the failures among the three have causal and hierarchical relationships.According to the channel direction,it can be divided into two types:tubing-casing annulus to casing annulus and casing annulus to the tubing-casing annulus,of which the former is more harmful.Some measures can be considered to prevent pressure channeling,including improvement of cementing quality,revision of maximum allowable annular pressure,and suitable frequency of pressure relief.
基金supported by the National Natural Science Foundation of China(Grant Nos.42130802 and 42372200)China Postdoctoral Science Foundation(No.2022M713792)+1 种基金Key Science and Technology Program of Shaanxi Province(No.2023YBGY-083)Open Fund of Key Laboratory of Coalbed Methane Resources and Reservoir Formation Process of the Ministry of Education(China University of Mining and Technology)(No.2022-007).
文摘The south-western Ordos Basin is rich in low-middle rank coalbed methane(CBM)resources;while the geochemical characteristics and genetic mechanism of CBM are not clear.Herein,according to geological and geochemical test data from gas and coal seam water from CBM wells in Bingchang,Jiaoxun,Huangling,Yonglong,and Longdong minging areas,we systematically studied the geochemical characteristics,generation,and evolution mechanism of CBM in Jurassic Yan’an Formation in the south-western Ordos Basin.The results show that the CH4 content of whole gas is in the range of 42.01%-94.72%.The distribution ranges of theδ^(13)C-CH_(4)value is−87.2‰to−32.5‰,indicating diverse sources of thermogenic gas and biogenic gas.The microbial methane is mainly generated by a CO_(2)reduction pathway,with certain methyl-type fermentation spots.Theδ^(13)C-CH_(4)has a positive correlation with burial depth,indicating the obvious fractionation of CBM.The relationship between the genetic types and burial depth of the CBM reservoir indicates that the favorable depth of secondary biogenic gas is less than 660 m.The Late Cretaceous Yanshanian Movement led to the uplift of the Ordos Basin,and a large amount of thermogenic gas escaped from the edge of the basin.Since the Paleogene Period,the coal reservoir in the basin margin has received recharge from atmospheric precipitation,which is favorable for the formation of secondary biogenic methane.The deep area,generally under 1000 m,mainly contains residual thermogenic gas.The intermediate transition zone is mixed gas.Constrained by the tectonic background,the genetic types of CBM in different mining areas are controlled by the coupling of burial depth,coal rank,and hydrogeological conditions.The Binchang mining area contains biogenic gas,and the development of CBM has achieved initial success,indicating that similar blocks with biogenic gas formation conditions is key to the efficient development of CBM.The research results provide a scientific basis for searching for favorable exploration areas of CBM in the south-western Ordos Basin.
基金Supported by Japan Society for the Promotion of Science(Grant Nos.14J04115,16K17990)
文摘Tailored surface textures at the micro- or nanoscale dimensions are widely used to get required functional performances. Rotary ultrasonic texturing (RUT) technique has been proved to be capable of fabricating periodic micro- and nanostructures. In the present study, diamond tools with geometrically defined cutting edges were designed for fabricating different types of tailored surface textures using the RUT method. Surface generation mechanisms and machinable structures of the RUT process are analyzed and simulated with a 3D-CAD program. Textured surfaces generated by using a triangular pyramid cutting tip are constructed. Different textural patterns from several micrometers to several tens of micrometers with few burrs were successfully fabricated, which proved that tools with a proper two-rake-face design are capable of removing cutting chips efficiently along a sinusoidal cutting locus in the RUT process. Technical applications of the textured surfaces are also discussed. Wetting properties of textured aluminum surfaces were evaluated by combining the test of surface roughness features. The results show that the real surface area of the textured aluminum surfaces almost doubled by comparing with that of a flat surface, and anisotropic wetting properties were obtained due to the obvious directional textural features.
基金the National Natural Science Foundation of China(through grants 41574142 and 41531070)the National Science Foundation(through grant AGS-1744033).
文摘This study presents an analysis of the quasi-16-day wave(Q16DW)at three stations in the middle latitudes by using a meteor radar chain in conjunction with Aura Microwave Limb Sounder temperature data and MERRA2(Modern-Era Retrospective Analysis for Research and Applications,Version 2)reanalysis data from 2008 to 2017.The radar chain consists of three meteor radar stations located at Mohe(MH,53.5°N,122.3°E),Beijing(BJ,40.3°N,116.2°E),and Wuhan(WH,30.5°N,114.6°E).The Q16DW wave exhibits similar seasonal variation in the neutral wind and temperature,and the Q16DW amplitude is generally strong during winter and weak around summer.The Q16DW at BJ was found to have secondary enhancement around September in the zonal wind,which is rarely reported at similar latitudes.The latitudinal variations of the Q16DW in the neutral wind and temperature are quite different.The Q16DW at BJ is the most prominent in both neutral wind components among the three stations and the Q16DW amplitudes at MH and WH are comparable,whereas the wave amplitude in temperature decreases with decreasing latitude.The quasi-geostrophic refractive index squared at the three stations in the period from 2008 to 2017 was revealed.The results indicate that the Q16DW in the mesosphere and lower thermosphere(MLT)at MH has a limited contribution from the lower atmosphere.Around March and October,the Q16DW in the troposphere at BJ can propagate upward into the MLT region,whereas at WH,the contribution to the Q16DW in the MLT region is largely from the mesosphere.
基金Supported by National Natural Science Foundation of China(50907046)
文摘The filter capacitor stack is one of the main acoustic noise sources in high-voltage DC(HVDC) converter stations.As HVDC systems are built more and more recently,it is significant to research the audible noise of filter capacitors.In this paper,the current situation of research on vibration and audible noise of filter capacitors in HVDC converter stations,which is departed into three parts—generation mechanism,prediction methods,and reduction measures,is presented and the research achievements are discussed.Scholars have built the model that the alternating electric force caused by the voltage conduces to the vibration,which propagates to the enclosure and radiates audible noise.As a result,the parts contributing most to the generation of audible noise are the top and the bottom of capacitors. In the noise level prediction respect,several methods have been prospected including impact hammer,sweep frequency, impact current,monopole and Kirchhoff formula method,which are suitable for single capacitors or capacitors stacks individually.However,the sweep frequency method is restricted by experiment condition,and the impact current method needs further research and verified.On the other hand,CIGRE WG14.26 provides three sound reduction measures,but all of them are not so practicable,while MPP absorber and compressible space absorber prospected by Dr.Wu Peng are proved to be effective.The sound barriers are also considered by scholars,and the acoustic directivity performance of capacitors is also researched.Besides,the developing direction of each research field is prospected in corresponding part.
基金supported by PetroChina Co Ltd.(Grant number:2015D-4810-02,2018YCQ03,2021DJ52)National Natural Science Foundation of China(Grant number:42172170)
文摘The purpose of this study is to investigate the entire evolution process of shales with various total organic contents(TOC)in order to build models for quantitative evaluation of oil and gas yields and establish methods for assessing recoverable oil and gas resources from in-situ conversion of organic matters in shale.Thermal simulation experiments under in-situ conversion conditions were conducted on Chang 7_(3) shales from the Ordos Basin in a semi-open system with large capacity.The results showed that TOC and R_(o) were the key factors affecting the in-situ transformation potential of shale.The remaining oil and gas yields increased linearly with TOC but inconsistently with R_(o).R_(o) ranged 0.75%—1.25%and 1.05%—2.3%,respectively,corresponding to the main oil generation stage and gas generation stage of shale in-situ transformation.Thus a model to evaluate the remaining oil/gas yield with TOC and R_(o) was obtained.The TOC of shale suitable for in-situ conversion should be greater than 6%,whereas its R_(o) should be less than 1.0%.Shales with 0.75%(R_(o))could obtain the best economic benefit.The results provided a theoretical basis and evaluation methodology for predicting the hydrocarbon resources from in-situ conversion of shale and for the identification of the optimum“sweet spots”.The assessment of the Chang 7_(3) shale in the Ordos Basin indicated that the recoverable oil and gas resources from in-situ conversion of organic matters in shale are substantial,with oil and gas resources reaching approximately 450×10^(8) t and 30×10^(12)m^(3),respectively,from an area of 4.27×10^(4) km^(2).
基金supported by the north-east margin area of Qinghai-Tibetplateau,from the research project of integrated observation of geophysicsfields for China(200908029-5)Tianjin research project on basic appli-cation and front technology(08JCZDJC18900)
文摘Some crustal-deformation data related to the Ms8.0 Wenchuan in 2008, was described and a model that is capable of explaining the observed deformation features is presented. The data include : pre-earthquake uplift in an area south of the epicenter obtained by repeated-leveling measurements ; pre-earthquake horizontal deformation by GPS observation during two periods in Sichuan-Yunnan area;vertical deformation along a short cross-fault leveling line in the epicenter area; and co-seismic near-field vertical and horizontal crustal-move- ment data by GPS. The model is basically "elastic-rebound", but involves a zone between two local faults that was squeezed out at the time of earthquake. :
基金supported by National Natural Science Foundation of China(Nos.11075181,10725523,10721505,10990212,10605028)the 973 Programme(No.2010GB104001)
文摘Intermittent convective transport at the edge and in the scrape-off layer (SOL) of EAST was investigated by using fast reciprocating Langmuir probe. Holes, as part of plasma structures, were detected for the first time inside the shear layer. The amplitude probability distribution function of the turbulence is strongly skewed, with positive skewed events ("blobs") prevailing in the SOL region and negative skewed events ("holes") dominant inside the shear layer. The statistical properties coincide with previous observations from JET. The generation mechanism of blobs and holes is also discussed. In addition burst structure and dynamics character of them are also presented.
基金RADARSAT-1 data were obtained under the NASA RADARSAT ADRO-2 Program (Project RADARSAT-0011-0071) and processed by the Alaska Satellite FacilityThe ASAR images were provided by the European Space Agency under ENVISAT Projects 141 and 6133
文摘In the satellite synthetic aperture radar(SAR) images of the Bohai Sea and Huanghai Sea,the authors observe sea surface imprints of wave-like patterns with an average wavelength of 3.8 km.Comparing SAR observations with sea surface wind fields and surface weather maps,the authors find that the occurrence of the wave-like phenomena is associated with the passing of atmospheric front.The authors define the waves as atmospheric frontal gravity waves.The dynamical parameters of the wave packets are derived from statistics of 9 satellite SAR images obtained from 2002 to 2008.A two-dimensional linear physical wave model is used to analyze the generation mechanism of the waves.The atmospheric frontal wave induced wind variation across the frontal wave packet is compared with wind retrievals from the SAR images.The CMOD-5(C-band scatterometer ocean geophysical model function) is used for SAR wind retrievals VV(transmitted vertical and received vertical) for ENVISAT and HH(transmitted horizontally and received horizontally) for RADARSAT-1.A reasonable agreement between the analytical solution and the SAR observation is reached.This new SAR frontal wave observation adds to the school of SAR observations of sea surface imprints of AGWs including island lee waves,coastal lee waves,and upstream Atmospheric Gravity Waves(AGW).
基金The"Twelfth Five-Year Plan"of the National Science and Technology Support Project(Grant No.2012BAK10B01)the National Natural Science Foundation of China(Grant Nos.41372321 and 41502305)China Geological Survey Projects(Grant No.121201009000150018)
文摘The Three Gorges region in China was basically a geohazard-prone area prior to construction of the Three Gorges Reservoir (TGR). After construction of the TGR, the water level was raised from 70 m to 175 m above sea level (ASL), and annual reservoir regulation has caused a 30-m water level difference after impoundment of the TGR since September 2008. This paper first presents the spatiotemporal distribution of landslides in six periods of 175 m ASL trial impoundments from 2008 to 2014. The results show that the number of landslides sharply decreased from 273 at the initial stage to less than ten at the second stage of impoundment. Based on this, the reservoir-induced landslides in the TGR region can be roughly classified into five failure patterns, i.e. accumulation landslide, dip-slope landslide, reversed bedding landslide, rockfall, and karst breccia landslide. The accumulation landslides and dip-slope landslides account for more than 90%. Taking the Shuping accumulation landslide (a sliding mass volume of 20.7 × 106 m^3) in Zigui County and the Outang dip-slope landslide (a sliding mass volume of about 90 × 106 m^3) in Fengjie County as two typical cases, the mechanisms of reactivation of the two landslides are analyzed. The monitoring data and factor of safety (FOS) calculation show that the accumulation landslide is dominated by water level variation in the reservoir as most part of the mass body is under 175 m ASL, and the dip-slope landslide is controlled by the coupling effect of reservoir water level variation and precipitation as an extensive recharge area of rainfall from the rear and the front mass is below 175 m ASL. The characteristics of landslide-induced impulsive wave hazards after and before reservoir impoundment are studied, and the probability of occurrence of a landslide-induced impulsive wave hazard has increased in the reservoir region. Simulation results of the Ganjingzi landslide in Wushan County indicate the strong relationship between landslide-induced surge and water variation with high potential risk to shipping and residential areas. Regarding reservoir regulation in TGR when using a single index, i.e. 1-d water level variation, water resources are not well utilized, and there is also potential risk of disasters since 2008. In addition, various indices such as 1-d, 5-d, and 10-d water level variations are proposed for reservoir regulation. Finally, taking reservoir-induced landslides in June 2015 for example, the feasibility of the optimizing indices of water level variations is verified.