Gentamicin is one of the commonly used antibiotics in small animal practice in Nigeria. Fake and substandard drugs are responsible for high cost in both economic terms and lives lost. For decades, Nigeria has been flo...Gentamicin is one of the commonly used antibiotics in small animal practice in Nigeria. Fake and substandard drugs are responsible for high cost in both economic terms and lives lost. For decades, Nigeria has been flooded by counterfeit and poor-quality medicines. Because of the variations in gentamicin C components in different formulations and the effect of this on its efficacy and toxicity, this study was designed to evaluate the percentage of each of the major components of gentamicin C in some injectable gentamicin sulphate generics commonly used in small animal practice in Nigeria. Of the 22 multisource generics of injectable gentamicin sulphate samples analyzed for percentage content of gentamicin C major components using USP HPLC (United States Pharmacopoeia high performance liquid chromatography) method, 95.5% (21 ) met the USP specification. This suggests that there is a significant improvement in the monitoring of quality of drugs marketed in Nigeria, including gentamicin sulphate. Nevertheless, considering the propensity of the manufacturers adjusting their manufacturing processes following product's registration by the regulatory body, there is still the need for regular surveillance of drug products by batches to ensure their efficacy and safety.展开更多
Powered by advanced information technology,more and more complex systems are exhibiting characteristics of the cyber-physical-social systems(CPSS).In this context,computational experiments method has emerged as a nove...Powered by advanced information technology,more and more complex systems are exhibiting characteristics of the cyber-physical-social systems(CPSS).In this context,computational experiments method has emerged as a novel approach for the design,analysis,management,control,and integration of CPSS,which can realize the causal analysis of complex systems by means of“algorithmization”of“counterfactuals”.However,because CPSS involve human and social factors(e.g.,autonomy,initiative,and sociality),it is difficult for traditional design of experiment(DOE)methods to achieve the generative explanation of system emergence.To address this challenge,this paper proposes an integrated approach to the design of computational experiments,incorporating three key modules:1)Descriptive module:Determining the influencing factors and response variables of the system by means of the modeling of an artificial society;2)Interpretative module:Selecting factorial experimental design solution to identify the relationship between influencing factors and macro phenomena;3)Predictive module:Building a meta-model that is equivalent to artificial society to explore its operating laws.Finally,a case study of crowd-sourcing platforms is presented to illustrate the application process and effectiveness of the proposed approach,which can reveal the social impact of algorithmic behavior on“rider race”.展开更多
Climate models are vital for understanding and projecting global climate change and its associated impacts.However,these models suffer from biases that limit their accuracy in historical simulations and the trustworth...Climate models are vital for understanding and projecting global climate change and its associated impacts.However,these models suffer from biases that limit their accuracy in historical simulations and the trustworthiness of future projections.Addressing these challenges requires addressing internal variability,hindering the direct alignment between model simulations and observations,and thwarting conventional supervised learning methods.Here,we employ an unsupervised Cycle-consistent Generative Adversarial Network(CycleGAN),to correct daily Sea Surface Temperature(SST)simulations from the Community Earth System Model 2(CESM2).Our results reveal that the CycleGAN not only corrects climatological biases but also improves the simulation of major dynamic modes including the El Niño-Southern Oscillation(ENSO)and the Indian Ocean Dipole mode,as well as SST extremes.Notably,it substantially corrects climatological SST biases,decreasing the globally averaged Root-Mean-Square Error(RMSE)by 58%.Intriguingly,the CycleGAN effectively addresses the well-known excessive westward bias in ENSO SST anomalies,a common issue in climate models that traditional methods,like quantile mapping,struggle to rectify.Additionally,it substantially improves the simulation of SST extremes,raising the pattern correlation coefficient(PCC)from 0.56 to 0.88 and lowering the RMSE from 0.5 to 0.32.This enhancement is attributed to better representations of interannual,intraseasonal,and synoptic scales variabilities.Our study offers a novel approach to correct global SST simulations and underscores its effectiveness across different time scales and primary dynamical modes.展开更多
Artificial intelligence is increasingly entering everyday healthcare.Large language model(LLM)systems such as Chat Generative Pre-trained Transformer(ChatGPT)have become potentially accessible to everyone,including pa...Artificial intelligence is increasingly entering everyday healthcare.Large language model(LLM)systems such as Chat Generative Pre-trained Transformer(ChatGPT)have become potentially accessible to everyone,including patients with inflammatory bowel diseases(IBD).However,significant ethical issues and pitfalls exist in innovative LLM tools.The hype generated by such systems may lead to unweighted patient trust in these systems.Therefore,it is necessary to understand whether LLMs(trendy ones,such as ChatGPT)can produce plausible medical information(MI)for patients.This review examined ChatGPT’s potential to provide MI regarding questions commonly addressed by patients with IBD to their gastroenterologists.From the review of the outputs provided by ChatGPT,this tool showed some attractive potential while having significant limitations in updating and detailing information and providing inaccurate information in some cases.Further studies and refinement of the ChatGPT,possibly aligning the outputs with the leading medical evidence provided by reliable databases,are needed.展开更多
The supercritical CO_(2)(sCO_(2))power cycle could improve efficiencies for a wide range of thermal power plants.The sCO_(2)turbine generator plays an important role in the sCO_(2)power cycle by directly converting th...The supercritical CO_(2)(sCO_(2))power cycle could improve efficiencies for a wide range of thermal power plants.The sCO_(2)turbine generator plays an important role in the sCO_(2)power cycle by directly converting thermal energy into mechanical work and electric power.The operation of the generator encounters challenges,including high temperature,high pressure,high rotational speed,and other engineering problems,such as leakage.Experimental studies of sCO_(2)turbines are insufficient because of the significant difficulties in turbine manufacturing and system construction.Unlike most experimental investigations that primarily focus on 100 kW‐or MW‐scale power generation systems,we consider,for the first time,a small‐scale power generator using sCO_(2).A partial admission axial turbine was designed and manufactured with a rated rotational speed of 40,000 rpm,and a CO_(2)transcritical power cycle test loop was constructed to validate the performance of our manufactured generator.A resistant gas was proposed in the constructed turbine expander to solve the leakage issue.Both dynamic and steady performances were investigated.The results indicated that a peak electric power of 11.55 kW was achieved at 29,369 rpm.The maximum total efficiency of the turbo‐generator was 58.98%,which was affected by both the turbine rotational speed and pressure ratio,according to the proposed performance map.展开更多
For the porous‐membrane‐based osmotic energy generator,the potential synergistic enhancement mechanism of various key parameters is still controversial,especially because optimizing the trade‐off between permeabili...For the porous‐membrane‐based osmotic energy generator,the potential synergistic enhancement mechanism of various key parameters is still controversial,especially because optimizing the trade‐off between permeability and selectivity is still a challenge.Here,to construct a permeability and selectivity synergistically enhanced osmotic energy generator,the twodimensional porous membranes with tunable charge density are prepared by inserting sulfonated polyether sulfone into graphene oxide.Influences of charge density and pore size on the ion transport are explored,and the ionic behaviors in the channel are calculated by numerical simulations.The mechanism of ion transport in the process is studied in depth,and the fundamental principles of energy conversion are revealed.The results demonstrate that charge density and pore size should be matched to construct the optimal ion channel.This collaborative enhancement strategy of permeability and selectivity has significantly improved the output power in osmotic energy generation;compared to the pure graphene oxide membrane,the composite membrane presents almost 20 times improvement.展开更多
In the assessment of car insurance claims,the claim rate for car insurance presents a highly skewed probability distribution,which is typically modeled using Tweedie distribution.The traditional approach to obtaining ...In the assessment of car insurance claims,the claim rate for car insurance presents a highly skewed probability distribution,which is typically modeled using Tweedie distribution.The traditional approach to obtaining the Tweedie regression model involves training on a centralized dataset,when the data is provided by multiple parties,training a privacy-preserving Tweedie regression model without exchanging raw data becomes a challenge.To address this issue,this study introduces a novel vertical federated learning-based Tweedie regression algorithm for multi-party auto insurance rate setting in data silos.The algorithm can keep sensitive data locally and uses privacy-preserving techniques to achieve intersection operations between the two parties holding the data.After determining which entities are shared,the participants train the model locally using the shared entity data to obtain the local generalized linear model intermediate parameters.The homomorphic encryption algorithms are introduced to interact with and update the model intermediate parameters to collaboratively complete the joint training of the car insurance rate-setting model.Performance tests on two publicly available datasets show that the proposed federated Tweedie regression algorithm can effectively generate Tweedie regression models that leverage the value of data fromboth partieswithout exchanging data.The assessment results of the scheme approach those of the Tweedie regressionmodel learned fromcentralized data,and outperformthe Tweedie regressionmodel learned independently by a single party.展开更多
This paper investigates the bit-interleaved coded generalized spatial modulation(BICGSM) with iterative decoding(BICGSM-ID) for multiple-input multiple-output(MIMO) visible light communications(VLC). In the BICGSM-ID ...This paper investigates the bit-interleaved coded generalized spatial modulation(BICGSM) with iterative decoding(BICGSM-ID) for multiple-input multiple-output(MIMO) visible light communications(VLC). In the BICGSM-ID scheme, the information bits conveyed by the signal-domain(SiD) symbols and the spatial-domain(SpD) light emitting diode(LED)-index patterns are coded by a protograph low-density parity-check(P-LDPC) code. Specifically, we propose a signal-domain symbol expanding and re-allocating(SSER) method for constructing a type of novel generalized spatial modulation(GSM) constellations, referred to as SSERGSM constellations, so as to boost the performance of the BICGSM-ID MIMO-VLC systems.Moreover, by applying a modified PEXIT(MPEXIT) algorithm, we further design a family of rate-compatible P-LDPC codes, referred to as enhanced accumulate-repeat-accumulate(EARA) codes,which possess both excellent decoding thresholds and linear-minimum-distance-growth property. Both analysis and simulation results illustrate that the proposed SSERGSM constellations and P-LDPC codes can remarkably improve the convergence and decoding performance of MIMO-VLC systems. Therefore, the proposed P-LDPC-coded SSERGSM-mapped BICGSMID configuration is envisioned as a promising transmission solution to satisfy the high-throughput requirement of MIMO-VLC applications.展开更多
Landslides are destructive natural disasters that cause catastrophic damage and loss of life worldwide.Accurately predicting landslide displacement enables effective early warning and risk management.However,the limit...Landslides are destructive natural disasters that cause catastrophic damage and loss of life worldwide.Accurately predicting landslide displacement enables effective early warning and risk management.However,the limited availability of on-site measurement data has been a substantial obstacle in developing data-driven models,such as state-of-the-art machine learning(ML)models.To address these challenges,this study proposes a data augmentation framework that uses generative adversarial networks(GANs),a recent advance in generative artificial intelligence(AI),to improve the accuracy of landslide displacement prediction.The framework provides effective data augmentation to enhance limited datasets.A recurrent GAN model,RGAN-LS,is proposed,specifically designed to generate realistic synthetic multivariate time series that mimics the characteristics of real landslide on-site measurement data.A customized moment-matching loss is incorporated in addition to the adversarial loss in GAN during the training of RGAN-LS to capture the temporal dynamics and correlations in real time series data.Then,the synthetic data generated by RGAN-LS is used to enhance the training of long short-term memory(LSTM)networks and particle swarm optimization-support vector machine(PSO-SVM)models for landslide displacement prediction tasks.Results on two landslides in the Three Gorges Reservoir(TGR)region show a significant improvement in LSTM model prediction performance when trained on augmented data.For instance,in the case of the Baishuihe landslide,the average root mean square error(RMSE)increases by 16.11%,and the mean absolute error(MAE)by 17.59%.More importantly,the model’s responsiveness during mutational stages is enhanced for early warning purposes.However,the results have shown that the static PSO-SVM model only sees marginal gains compared to recurrent models such as LSTM.Further analysis indicates that an optimal synthetic-to-real data ratio(50%on the illustration cases)maximizes the improvements.This also demonstrates the robustness and effectiveness of supplementing training data for dynamic models to obtain better results.By using the powerful generative AI approach,RGAN-LS can generate high-fidelity synthetic landslide data.This is critical for improving the performance of advanced ML models in predicting landslide displacement,particularly when there are limited training data.Additionally,this approach has the potential to expand the use of generative AI in geohazard risk management and other research areas.展开更多
Special Issue Guest Editors·Michael Gofman,Senior Lecturer in Finance at the Hebrew University of Jerusalem·Zhao Jin,Assistant Professor of Finance,CKGSB Special Issue Information Artificial intelligence(AI)...Special Issue Guest Editors·Michael Gofman,Senior Lecturer in Finance at the Hebrew University of Jerusalem·Zhao Jin,Assistant Professor of Finance,CKGSB Special Issue Information Artificial intelligence(AI)is becoming an increasingly important tool for fund managers,CFOs,regulators,traders,investors,and entrepreneurs.The generative AI revolution that started with the ChatGPT,has spurred a gale of creative destruction that poses risks and opportunities to most firms in the world.展开更多
Architectural singularity belongs to the Type II singularity,in which a parallel manipulator(PM)gains one or more degrees of freedom and becomes uncontrollable.PMs remaining permanently in a singularity are beneficial...Architectural singularity belongs to the Type II singularity,in which a parallel manipulator(PM)gains one or more degrees of freedom and becomes uncontrollable.PMs remaining permanently in a singularity are beneficial for linearto-rotary motion conversion.Griffis-Duffy(GD)platform is a mobile structure admitting a Bricard motion.In this paper,we present a coordinate-free approach to the design of generalized GD platforms,which consists in determining the shape and attachment of both the moving platform and the fixed base.The generalized GD platform is treated as a combination of six coaxial single-loop mechanisms under the same constraints.Owing to the inversion,hidden in the geometric structure of these single-loop mechanisms,the mapping from a line to a circle establishes the geometric transformation between the fixed base and the moving platform based on the center of inversion,and describes the shape and attachment of the generalized GD platform.Moreover,the center of inversion not only identifies the location of rotation axis,but also affects the shape of the platform mechanism.A graphical construction of generalized GD platforms using inversion,proposed in the paper,provides geometrically feasible solutions of the manipulator design for the requirement of the location of rotation axis.展开更多
As Natural Language Processing(NLP)continues to advance,driven by the emergence of sophisticated large language models such as ChatGPT,there has been a notable growth in research activity.This rapid uptake reflects in...As Natural Language Processing(NLP)continues to advance,driven by the emergence of sophisticated large language models such as ChatGPT,there has been a notable growth in research activity.This rapid uptake reflects increasing interest in the field and induces critical inquiries into ChatGPT’s applicability in the NLP domain.This review paper systematically investigates the role of ChatGPT in diverse NLP tasks,including information extraction,Name Entity Recognition(NER),event extraction,relation extraction,Part of Speech(PoS)tagging,text classification,sentiment analysis,emotion recognition and text annotation.The novelty of this work lies in its comprehensive analysis of the existing literature,addressing a critical gap in understanding ChatGPT’s adaptability,limitations,and optimal application.In this paper,we employed a systematic stepwise approach following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)framework to direct our search process and seek relevant studies.Our review reveals ChatGPT’s significant potential in enhancing various NLP tasks.Its adaptability in information extraction tasks,sentiment analysis,and text classification showcases its ability to comprehend diverse contexts and extract meaningful details.Additionally,ChatGPT’s flexibility in annotation tasks reducesmanual efforts and accelerates the annotation process,making it a valuable asset in NLP development and research.Furthermore,GPT-4 and prompt engineering emerge as a complementary mechanism,empowering users to guide the model and enhance overall accuracy.Despite its promising potential,challenges persist.The performance of ChatGP Tneeds tobe testedusingmore extensivedatasets anddiversedata structures.Subsequently,its limitations in handling domain-specific language and the need for fine-tuning in specific applications highlight the importance of further investigations to address these issues.展开更多
Graphene(Gr)with widely acclaimed characteristics,such as exceptionally long spin diffusion length at room temperature,provides an outstanding platform for spintronics.However,its inherent weak spin–orbit coupling(SO...Graphene(Gr)with widely acclaimed characteristics,such as exceptionally long spin diffusion length at room temperature,provides an outstanding platform for spintronics.However,its inherent weak spin–orbit coupling(SOC)has limited its efficiency for generating the spin currents in order to control the magnetization switching process for applications in spintronics memories.Following the theoretical prediction on the enhancement of SOC in Gr by heavy atoms adsorption,here we experimentally observe a sizeable spin–orbit torques(SOTs)in Gr by the decoration of its surface with Pt adatoms in Gr/Pt(t Pt)/Fe Ni trilayers with the optimal damping-like SOT efficiency around 0.55 by 0.6-nm-thick Pt layer adsorption.The value is nearly four times larger than that of the Pt/Fe Ni sample without Gr and nearly twice the value of the Gr/Fe Ni sample without Pt adsorption.The efficiency of the enhanced SOT in Gr by Pt adatoms is also demonstrated by the field-free SOT magnetization switching process with a relatively low critical current density around 5.4 MA/cm^(2)in Gr/Pt/Fe Ni trilayers with the in-plane magnetic anisotropy.These findings pave the way for Gr spintronics applications,offering solutions for future low power consumption memories.展开更多
The generalized oscillator strengths of the dipole-forbidden excitations of the ^(1)A_(2) of H_(2)O and D_(2)O were calculated with the time dependent density functional theory,by taking into account the vibronic effe...The generalized oscillator strengths of the dipole-forbidden excitations of the ^(1)A_(2) of H_(2)O and D_(2)O were calculated with the time dependent density functional theory,by taking into account the vibronic effect.It is found that the vibronic effect converts the dipole-forbidden excitation of the ^(1)A_(2) into a dipole-allowed one,which enhances the intensities of the corresponding generalized oscillator strength in the small squared momentum transfer region.The present investigation shows that the vibronic effect of H_(2)O is slightly stronger than that of D_(2)O,which exhibits a clear isotopic effect.展开更多
Much of the world's biodiversity lies in heterogeneous mountain areas with their diverse environments.As an example,Iranian montane ranges are highly diverse,particularly in the Irano-Turanian phytogeographical re...Much of the world's biodiversity lies in heterogeneous mountain areas with their diverse environments.As an example,Iranian montane ranges are highly diverse,particularly in the Irano-Turanian phytogeographical region.Understanding plant diversity patterns with increasing elevation is of high significance,not least for conservation planning.We studied the pattern of species richness,Shannon diversity,endemic richness,endemics ratio,and richness of life forms along a 3900 m elevational transect in Mount Palvar,overlooking the Lut Desert in Southeast Iran.We also analyzed the effect of environmental variables on species turnover along the vertical gradient.A total of 120 vegetation plots(10 m×10 m)were sampled along the elevational transect containing species and environmental data.To discover plant diversity pattern along the elevational gradient,generalized additive model(GAM)was used.Non-metric multidimensional scaling(NMDS)was applied for illustrating the correlation between species composition and environmental variables.We found hump-shaped pattern for species richness,Shannon diversity,endemic richness,and species richness of different life forms,but a monotonic increasing pattern for ratio of endemic species from low to high elevations.Our study confirms the humped pattern of species richness peaking at intermediate elevations along a complete elevational gradient in a semi-arid mountain.The monotonic increase of endemics ratio with elevation in our area as a case study is consistent with global increase of endemism with elevation.According to our results,temperature and precipitation are two important climatic variables that drive elevational plant diversity,particularly in seasonally dry areas.Our study suggests that effective conservation and management are needed for this low latitude mountain area along with calling for long-term monitoring for species redistribution.展开更多
Micron-scale crack propagation in red-bed soft rocks under hydraulic action is a common cause of engineering disasters due to damage to the hard rockesoft rockewater interface.Previous studies have not provided a theo...Micron-scale crack propagation in red-bed soft rocks under hydraulic action is a common cause of engineering disasters due to damage to the hard rockesoft rockewater interface.Previous studies have not provided a theoretical analysis of the length,inclination angle,and propagation angle of micron-scale cracks,nor have they established appropriate criteria to describe the crack propagation process.The propagation mechanism of micron-scale cracks in red-bed soft rocks under hydraulic action is not yet fully understood,which makes it challenging to prevent engineering disasters in these types of rocks.To address this issue,we have used the existing generalized maximum tangential stress(GMTS)and generalized maximum energy release rate(GMERR)criteria as the basis and introduced parameters related to micron-scale crack propagation and water action.The GMTS and GMERR criteria for micronscale crack propagation in red-bed soft rocks under hydraulic action(abbreviated as the Wmic-GMTS and Wmic-GMERR criteria,respectively)were established to evaluate micron-scale crack propagation in redbed soft rocks under hydraulic action.The influence of the parameters was also described.The process of micron-scale crack propagation under hydraulic action was monitored using uniaxial compression tests(UCTs)based on digital image correlation(DIC)technology.The study analyzed the length,propagation and inclination angles,and mechanical parameters of micron-scale crack propagation to confirm the reliability of the established criteria.The findings suggest that the Wmic-GMTS and Wmic-GMERR criteria are effective in describing the micron-scale crack propagation in red-bed soft rocks under hydraulic action.This study discusses the mechanism of micron-scale crack propagation and its effect on engineering disasters under hydraulic action.It covers topics such as the internal-external weakening of nano-scale particles,lateral propagation of micron-scale cracks,weakening of the mechanical properties of millimeter-scale soft rocks,and resulting interface damage at the engineering scale.The study provides a theoretical basis for the mechanism of disasters in red-bed soft-rock engineering under hydraulic action.展开更多
Over the past decade,the presence of mistletoe(Viscum album ssp.austriacum)in Scots pine stands has increased in many European countries.Understanding the factors that influence the occurrence of mistletoe in stands i...Over the past decade,the presence of mistletoe(Viscum album ssp.austriacum)in Scots pine stands has increased in many European countries.Understanding the factors that influence the occurrence of mistletoe in stands is key to making appropriate forest management decisions to limit damage and prevent the spread of mistletoe in the future.Therefore,the main objective of this study was to determine the probability of mistletoe occurrence in Scots pine stands in relation to stand-related endogenous factors such as age,top height,and stand density,as well as topographic and edaphic factors.We used unmanned aerial vehicle(UAV)imagery from 2,247 stands to detect mistletoe in Scots pine stands,while majority stand and site characteristics were calculated from airborne laser scanning(ALS)data.Information on stand age and site type from the State Forest database were also used.We found that mistletoe infestation in Scots pine stands is influenced by stand and site characteristics.We documented that the densest,tallest,and oldest stands were more susceptible to mistletoe infestation.Site type and specific microsite conditions associated with topography were also important factors driving mistletoe occurrence.In addition,climatic water balance was a significant factor in increasing the probability of mistletoe occurrence,which is important in the context of predicted temperature increases associated with climate change.Our results are important for better understanding patterns of mistletoe infestation and ecosystem functioning under climate change.In an era of climate change and technological development,the use of remote sensing methods to determine the risk of mistletoe infestation can be a very useful tool for managing forest ecosystems to maintain forest sustainability and prevent forest disturbance.展开更多
A novel inverted generalized gamma(IGG)distribution,proposed for data modelling with an upside-down bathtub hazard rate,is considered.In many real-world practical situations,when a researcher wants to conduct a compar...A novel inverted generalized gamma(IGG)distribution,proposed for data modelling with an upside-down bathtub hazard rate,is considered.In many real-world practical situations,when a researcher wants to conduct a comparative study of the life testing of items based on cost and duration of testing,censoring strategies are frequently used.From this point of view,in the presence of censored data compiled from the most well-known progressively Type-Ⅱ censoring technique,this study examines different parameters of the IGG distribution.From a classical point of view,the likelihood and product of spacing estimation methods are considered.Observed Fisher information and the deltamethod are used to obtain the approximate confidence intervals for any unknown parametric function of the suggestedmodel.In the Bayesian paradigm,the same traditional inferential approaches are used to estimate all unknown subjects.Markov-Chain with Monte-Carlo steps are considered to approximate all Bayes’findings.Extensive numerical comparisons are presented to examine the performance of the proposed methodologies using various criteria of accuracy.Further,using several optimality criteria,the optimumprogressive censoring design is suggested.To highlight how the proposed estimators can be used in practice and to verify the flexibility of the proposed model,we analyze the failure times of twenty mechanical components of a diesel engine.展开更多
In this paper,we reconstruct strongly-decaying block sparse signals by the block generalized orthogonal matching pursuit(BgOMP)algorithm in the l2-bounded noise case.Under some restraints on the minimum magnitude of t...In this paper,we reconstruct strongly-decaying block sparse signals by the block generalized orthogonal matching pursuit(BgOMP)algorithm in the l2-bounded noise case.Under some restraints on the minimum magnitude of the nonzero elements of the strongly-decaying block sparse signal,if the sensing matrix satisfies the the block restricted isometry property(block-RIP),then arbitrary strongly-decaying block sparse signals can be accurately and steadily reconstructed by the BgOMP algorithm in iterations.Furthermore,we conjecture that this condition is sharp.展开更多
文摘Gentamicin is one of the commonly used antibiotics in small animal practice in Nigeria. Fake and substandard drugs are responsible for high cost in both economic terms and lives lost. For decades, Nigeria has been flooded by counterfeit and poor-quality medicines. Because of the variations in gentamicin C components in different formulations and the effect of this on its efficacy and toxicity, this study was designed to evaluate the percentage of each of the major components of gentamicin C in some injectable gentamicin sulphate generics commonly used in small animal practice in Nigeria. Of the 22 multisource generics of injectable gentamicin sulphate samples analyzed for percentage content of gentamicin C major components using USP HPLC (United States Pharmacopoeia high performance liquid chromatography) method, 95.5% (21 ) met the USP specification. This suggests that there is a significant improvement in the monitoring of quality of drugs marketed in Nigeria, including gentamicin sulphate. Nevertheless, considering the propensity of the manufacturers adjusting their manufacturing processes following product's registration by the regulatory body, there is still the need for regular surveillance of drug products by batches to ensure their efficacy and safety.
基金the National Key Research and Development Program of China(2021YFF0900800)the National Natural Science Foundation of China(61972276,62206116,62032016)+2 种基金the New Liberal Arts Reform and Practice Project of National Ministry of Education(2021170002)the Open Research Fund of the State Key Laboratory for Management and Control of Complex Systems(20210101)Tianjin University Talent Innovation Reward Program for Literature and Science Graduate Student(C1-2022-010)。
文摘Powered by advanced information technology,more and more complex systems are exhibiting characteristics of the cyber-physical-social systems(CPSS).In this context,computational experiments method has emerged as a novel approach for the design,analysis,management,control,and integration of CPSS,which can realize the causal analysis of complex systems by means of“algorithmization”of“counterfactuals”.However,because CPSS involve human and social factors(e.g.,autonomy,initiative,and sociality),it is difficult for traditional design of experiment(DOE)methods to achieve the generative explanation of system emergence.To address this challenge,this paper proposes an integrated approach to the design of computational experiments,incorporating three key modules:1)Descriptive module:Determining the influencing factors and response variables of the system by means of the modeling of an artificial society;2)Interpretative module:Selecting factorial experimental design solution to identify the relationship between influencing factors and macro phenomena;3)Predictive module:Building a meta-model that is equivalent to artificial society to explore its operating laws.Finally,a case study of crowd-sourcing platforms is presented to illustrate the application process and effectiveness of the proposed approach,which can reveal the social impact of algorithmic behavior on“rider race”.
基金supported by the National Natural Science Foundation of China(Grant Nos.42141019 and 42261144687)the Second Tibetan Plateau Scientific Expedition and Research(STEP)program(Grant No.2019QZKK0102)+4 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB42010404)the National Natural Science Foundation of China(Grant No.42175049)the Guangdong Meteorological Service Science and Technology Research Project(Grant No.GRMC2021M01)the National Key Scientific and Technological Infrastructure project“Earth System Science Numerical Simulator Facility”(EarthLab)for computational support and Prof.Shiming XIANG for many useful discussionsNiklas BOERS acknowledges funding from the Volkswagen foundation.
文摘Climate models are vital for understanding and projecting global climate change and its associated impacts.However,these models suffer from biases that limit their accuracy in historical simulations and the trustworthiness of future projections.Addressing these challenges requires addressing internal variability,hindering the direct alignment between model simulations and observations,and thwarting conventional supervised learning methods.Here,we employ an unsupervised Cycle-consistent Generative Adversarial Network(CycleGAN),to correct daily Sea Surface Temperature(SST)simulations from the Community Earth System Model 2(CESM2).Our results reveal that the CycleGAN not only corrects climatological biases but also improves the simulation of major dynamic modes including the El Niño-Southern Oscillation(ENSO)and the Indian Ocean Dipole mode,as well as SST extremes.Notably,it substantially corrects climatological SST biases,decreasing the globally averaged Root-Mean-Square Error(RMSE)by 58%.Intriguingly,the CycleGAN effectively addresses the well-known excessive westward bias in ENSO SST anomalies,a common issue in climate models that traditional methods,like quantile mapping,struggle to rectify.Additionally,it substantially improves the simulation of SST extremes,raising the pattern correlation coefficient(PCC)from 0.56 to 0.88 and lowering the RMSE from 0.5 to 0.32.This enhancement is attributed to better representations of interannual,intraseasonal,and synoptic scales variabilities.Our study offers a novel approach to correct global SST simulations and underscores its effectiveness across different time scales and primary dynamical modes.
文摘Artificial intelligence is increasingly entering everyday healthcare.Large language model(LLM)systems such as Chat Generative Pre-trained Transformer(ChatGPT)have become potentially accessible to everyone,including patients with inflammatory bowel diseases(IBD).However,significant ethical issues and pitfalls exist in innovative LLM tools.The hype generated by such systems may lead to unweighted patient trust in these systems.Therefore,it is necessary to understand whether LLMs(trendy ones,such as ChatGPT)can produce plausible medical information(MI)for patients.This review examined ChatGPT’s potential to provide MI regarding questions commonly addressed by patients with IBD to their gastroenterologists.From the review of the outputs provided by ChatGPT,this tool showed some attractive potential while having significant limitations in updating and detailing information and providing inaccurate information in some cases.Further studies and refinement of the ChatGPT,possibly aligning the outputs with the leading medical evidence provided by reliable databases,are needed.
基金National Science Fund for Excellent Young Scholars,Grant/Award Number:52022066。
文摘The supercritical CO_(2)(sCO_(2))power cycle could improve efficiencies for a wide range of thermal power plants.The sCO_(2)turbine generator plays an important role in the sCO_(2)power cycle by directly converting thermal energy into mechanical work and electric power.The operation of the generator encounters challenges,including high temperature,high pressure,high rotational speed,and other engineering problems,such as leakage.Experimental studies of sCO_(2)turbines are insufficient because of the significant difficulties in turbine manufacturing and system construction.Unlike most experimental investigations that primarily focus on 100 kW‐or MW‐scale power generation systems,we consider,for the first time,a small‐scale power generator using sCO_(2).A partial admission axial turbine was designed and manufactured with a rated rotational speed of 40,000 rpm,and a CO_(2)transcritical power cycle test loop was constructed to validate the performance of our manufactured generator.A resistant gas was proposed in the constructed turbine expander to solve the leakage issue.Both dynamic and steady performances were investigated.The results indicated that a peak electric power of 11.55 kW was achieved at 29,369 rpm.The maximum total efficiency of the turbo‐generator was 58.98%,which was affected by both the turbine rotational speed and pressure ratio,according to the proposed performance map.
基金Natural Science Foundation of Jilin Province,Grant/Award Number:YDZJ202101ZYTS002National Natural Science Foundation of China,Grant/Award Number:52003099+1 种基金Capital Construction Fund of Jilin Province,Grant/Award Number:2021C039‐1Fundamental Research Funds for the Central Universities。
文摘For the porous‐membrane‐based osmotic energy generator,the potential synergistic enhancement mechanism of various key parameters is still controversial,especially because optimizing the trade‐off between permeability and selectivity is still a challenge.Here,to construct a permeability and selectivity synergistically enhanced osmotic energy generator,the twodimensional porous membranes with tunable charge density are prepared by inserting sulfonated polyether sulfone into graphene oxide.Influences of charge density and pore size on the ion transport are explored,and the ionic behaviors in the channel are calculated by numerical simulations.The mechanism of ion transport in the process is studied in depth,and the fundamental principles of energy conversion are revealed.The results demonstrate that charge density and pore size should be matched to construct the optimal ion channel.This collaborative enhancement strategy of permeability and selectivity has significantly improved the output power in osmotic energy generation;compared to the pure graphene oxide membrane,the composite membrane presents almost 20 times improvement.
基金This research was funded by the National Natural Science Foundation of China(No.62272124)the National Key Research and Development Program of China(No.2022YFB2701401)+3 种基金Guizhou Province Science and Technology Plan Project(Grant Nos.Qiankehe Paltform Talent[2020]5017)The Research Project of Guizhou University for Talent Introduction(No.[2020]61)the Cultivation Project of Guizhou University(No.[2019]56)the Open Fund of Key Laboratory of Advanced Manufacturing Technology,Ministry of Education(GZUAMT2021KF[01]).
文摘In the assessment of car insurance claims,the claim rate for car insurance presents a highly skewed probability distribution,which is typically modeled using Tweedie distribution.The traditional approach to obtaining the Tweedie regression model involves training on a centralized dataset,when the data is provided by multiple parties,training a privacy-preserving Tweedie regression model without exchanging raw data becomes a challenge.To address this issue,this study introduces a novel vertical federated learning-based Tweedie regression algorithm for multi-party auto insurance rate setting in data silos.The algorithm can keep sensitive data locally and uses privacy-preserving techniques to achieve intersection operations between the two parties holding the data.After determining which entities are shared,the participants train the model locally using the shared entity data to obtain the local generalized linear model intermediate parameters.The homomorphic encryption algorithms are introduced to interact with and update the model intermediate parameters to collaboratively complete the joint training of the car insurance rate-setting model.Performance tests on two publicly available datasets show that the proposed federated Tweedie regression algorithm can effectively generate Tweedie regression models that leverage the value of data fromboth partieswithout exchanging data.The assessment results of the scheme approach those of the Tweedie regressionmodel learned fromcentralized data,and outperformthe Tweedie regressionmodel learned independently by a single party.
基金supported in part by the NSF of China under Grant 62322106,62071131the Guangdong Basic and Applied Basic Research Foundation under Grant 2022B1515020086+2 种基金the International Collaborative Research Program of Guangdong Science and Technology Department under Grant 2022A0505050070in part by the Open Research Fund of the State Key Laboratory of Integrated Services Networks under Grant ISN22-23the National Research Foundation,Singapore University of Technology Design under its Future Communications Research&Development Programme“Advanced Error Control Coding for 6G URLLC and mMTC”Grant No.FCP-NTU-RG-2022-020.
文摘This paper investigates the bit-interleaved coded generalized spatial modulation(BICGSM) with iterative decoding(BICGSM-ID) for multiple-input multiple-output(MIMO) visible light communications(VLC). In the BICGSM-ID scheme, the information bits conveyed by the signal-domain(SiD) symbols and the spatial-domain(SpD) light emitting diode(LED)-index patterns are coded by a protograph low-density parity-check(P-LDPC) code. Specifically, we propose a signal-domain symbol expanding and re-allocating(SSER) method for constructing a type of novel generalized spatial modulation(GSM) constellations, referred to as SSERGSM constellations, so as to boost the performance of the BICGSM-ID MIMO-VLC systems.Moreover, by applying a modified PEXIT(MPEXIT) algorithm, we further design a family of rate-compatible P-LDPC codes, referred to as enhanced accumulate-repeat-accumulate(EARA) codes,which possess both excellent decoding thresholds and linear-minimum-distance-growth property. Both analysis and simulation results illustrate that the proposed SSERGSM constellations and P-LDPC codes can remarkably improve the convergence and decoding performance of MIMO-VLC systems. Therefore, the proposed P-LDPC-coded SSERGSM-mapped BICGSMID configuration is envisioned as a promising transmission solution to satisfy the high-throughput requirement of MIMO-VLC applications.
基金supported by the Natural Science Foundation of Jiangsu Province(Grant No.BK20220421)the State Key Program of the National Natural Science Foundation of China(Grant No.42230702)the National Natural Science Foundation of China(Grant No.82302352).
文摘Landslides are destructive natural disasters that cause catastrophic damage and loss of life worldwide.Accurately predicting landslide displacement enables effective early warning and risk management.However,the limited availability of on-site measurement data has been a substantial obstacle in developing data-driven models,such as state-of-the-art machine learning(ML)models.To address these challenges,this study proposes a data augmentation framework that uses generative adversarial networks(GANs),a recent advance in generative artificial intelligence(AI),to improve the accuracy of landslide displacement prediction.The framework provides effective data augmentation to enhance limited datasets.A recurrent GAN model,RGAN-LS,is proposed,specifically designed to generate realistic synthetic multivariate time series that mimics the characteristics of real landslide on-site measurement data.A customized moment-matching loss is incorporated in addition to the adversarial loss in GAN during the training of RGAN-LS to capture the temporal dynamics and correlations in real time series data.Then,the synthetic data generated by RGAN-LS is used to enhance the training of long short-term memory(LSTM)networks and particle swarm optimization-support vector machine(PSO-SVM)models for landslide displacement prediction tasks.Results on two landslides in the Three Gorges Reservoir(TGR)region show a significant improvement in LSTM model prediction performance when trained on augmented data.For instance,in the case of the Baishuihe landslide,the average root mean square error(RMSE)increases by 16.11%,and the mean absolute error(MAE)by 17.59%.More importantly,the model’s responsiveness during mutational stages is enhanced for early warning purposes.However,the results have shown that the static PSO-SVM model only sees marginal gains compared to recurrent models such as LSTM.Further analysis indicates that an optimal synthetic-to-real data ratio(50%on the illustration cases)maximizes the improvements.This also demonstrates the robustness and effectiveness of supplementing training data for dynamic models to obtain better results.By using the powerful generative AI approach,RGAN-LS can generate high-fidelity synthetic landslide data.This is critical for improving the performance of advanced ML models in predicting landslide displacement,particularly when there are limited training data.Additionally,this approach has the potential to expand the use of generative AI in geohazard risk management and other research areas.
文摘Special Issue Guest Editors·Michael Gofman,Senior Lecturer in Finance at the Hebrew University of Jerusalem·Zhao Jin,Assistant Professor of Finance,CKGSB Special Issue Information Artificial intelligence(AI)is becoming an increasingly important tool for fund managers,CFOs,regulators,traders,investors,and entrepreneurs.The generative AI revolution that started with the ChatGPT,has spurred a gale of creative destruction that poses risks and opportunities to most firms in the world.
基金Supported by National Natural Science Foundation of China (Grant Nos.U1813221,52075015)Personnel Startup Project of Zhejiang A&F University Scientific Research Development Foundation of China (Grant No.2024LFR015)。
文摘Architectural singularity belongs to the Type II singularity,in which a parallel manipulator(PM)gains one or more degrees of freedom and becomes uncontrollable.PMs remaining permanently in a singularity are beneficial for linearto-rotary motion conversion.Griffis-Duffy(GD)platform is a mobile structure admitting a Bricard motion.In this paper,we present a coordinate-free approach to the design of generalized GD platforms,which consists in determining the shape and attachment of both the moving platform and the fixed base.The generalized GD platform is treated as a combination of six coaxial single-loop mechanisms under the same constraints.Owing to the inversion,hidden in the geometric structure of these single-loop mechanisms,the mapping from a line to a circle establishes the geometric transformation between the fixed base and the moving platform based on the center of inversion,and describes the shape and attachment of the generalized GD platform.Moreover,the center of inversion not only identifies the location of rotation axis,but also affects the shape of the platform mechanism.A graphical construction of generalized GD platforms using inversion,proposed in the paper,provides geometrically feasible solutions of the manipulator design for the requirement of the location of rotation axis.
文摘As Natural Language Processing(NLP)continues to advance,driven by the emergence of sophisticated large language models such as ChatGPT,there has been a notable growth in research activity.This rapid uptake reflects increasing interest in the field and induces critical inquiries into ChatGPT’s applicability in the NLP domain.This review paper systematically investigates the role of ChatGPT in diverse NLP tasks,including information extraction,Name Entity Recognition(NER),event extraction,relation extraction,Part of Speech(PoS)tagging,text classification,sentiment analysis,emotion recognition and text annotation.The novelty of this work lies in its comprehensive analysis of the existing literature,addressing a critical gap in understanding ChatGPT’s adaptability,limitations,and optimal application.In this paper,we employed a systematic stepwise approach following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)framework to direct our search process and seek relevant studies.Our review reveals ChatGPT’s significant potential in enhancing various NLP tasks.Its adaptability in information extraction tasks,sentiment analysis,and text classification showcases its ability to comprehend diverse contexts and extract meaningful details.Additionally,ChatGPT’s flexibility in annotation tasks reducesmanual efforts and accelerates the annotation process,making it a valuable asset in NLP development and research.Furthermore,GPT-4 and prompt engineering emerge as a complementary mechanism,empowering users to guide the model and enhance overall accuracy.Despite its promising potential,challenges persist.The performance of ChatGP Tneeds tobe testedusingmore extensivedatasets anddiversedata structures.Subsequently,its limitations in handling domain-specific language and the need for fine-tuning in specific applications highlight the importance of further investigations to address these issues.
基金supported by the National Key R&D Program of China(Grant No.2021YFB3501304)the National Natural Science Foundation of China(Grant Nos.91963201 and 51671098)+4 种基金the 111 Project(Grant No.B20063)the Open Research Fund of Songshan Lake Materials Laboratory(Grant No.2023SLABFN05)the Program for Changjiang Scholars and Innovative Research Team in University PCSIRT(Grant No.IRT16R35)the Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2021-ct01)the Natural Science Foundation of Gansu Province(Grant No.22JR5RA474)。
文摘Graphene(Gr)with widely acclaimed characteristics,such as exceptionally long spin diffusion length at room temperature,provides an outstanding platform for spintronics.However,its inherent weak spin–orbit coupling(SOC)has limited its efficiency for generating the spin currents in order to control the magnetization switching process for applications in spintronics memories.Following the theoretical prediction on the enhancement of SOC in Gr by heavy atoms adsorption,here we experimentally observe a sizeable spin–orbit torques(SOTs)in Gr by the decoration of its surface with Pt adatoms in Gr/Pt(t Pt)/Fe Ni trilayers with the optimal damping-like SOT efficiency around 0.55 by 0.6-nm-thick Pt layer adsorption.The value is nearly four times larger than that of the Pt/Fe Ni sample without Gr and nearly twice the value of the Gr/Fe Ni sample without Pt adsorption.The efficiency of the enhanced SOT in Gr by Pt adatoms is also demonstrated by the field-free SOT magnetization switching process with a relatively low critical current density around 5.4 MA/cm^(2)in Gr/Pt/Fe Ni trilayers with the in-plane magnetic anisotropy.These findings pave the way for Gr spintronics applications,offering solutions for future low power consumption memories.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12334010,12174259,and 11604003)。
文摘The generalized oscillator strengths of the dipole-forbidden excitations of the ^(1)A_(2) of H_(2)O and D_(2)O were calculated with the time dependent density functional theory,by taking into account the vibronic effect.It is found that the vibronic effect converts the dipole-forbidden excitation of the ^(1)A_(2) into a dipole-allowed one,which enhances the intensities of the corresponding generalized oscillator strength in the small squared momentum transfer region.The present investigation shows that the vibronic effect of H_(2)O is slightly stronger than that of D_(2)O,which exhibits a clear isotopic effect.
文摘Much of the world's biodiversity lies in heterogeneous mountain areas with their diverse environments.As an example,Iranian montane ranges are highly diverse,particularly in the Irano-Turanian phytogeographical region.Understanding plant diversity patterns with increasing elevation is of high significance,not least for conservation planning.We studied the pattern of species richness,Shannon diversity,endemic richness,endemics ratio,and richness of life forms along a 3900 m elevational transect in Mount Palvar,overlooking the Lut Desert in Southeast Iran.We also analyzed the effect of environmental variables on species turnover along the vertical gradient.A total of 120 vegetation plots(10 m×10 m)were sampled along the elevational transect containing species and environmental data.To discover plant diversity pattern along the elevational gradient,generalized additive model(GAM)was used.Non-metric multidimensional scaling(NMDS)was applied for illustrating the correlation between species composition and environmental variables.We found hump-shaped pattern for species richness,Shannon diversity,endemic richness,and species richness of different life forms,but a monotonic increasing pattern for ratio of endemic species from low to high elevations.Our study confirms the humped pattern of species richness peaking at intermediate elevations along a complete elevational gradient in a semi-arid mountain.The monotonic increase of endemics ratio with elevation in our area as a case study is consistent with global increase of endemism with elevation.According to our results,temperature and precipitation are two important climatic variables that drive elevational plant diversity,particularly in seasonally dry areas.Our study suggests that effective conservation and management are needed for this low latitude mountain area along with calling for long-term monitoring for species redistribution.
基金funded by the National Natural Science Foundation of China(NSFC)(Grant Nos.42293354,42293351,and 42277131).
文摘Micron-scale crack propagation in red-bed soft rocks under hydraulic action is a common cause of engineering disasters due to damage to the hard rockesoft rockewater interface.Previous studies have not provided a theoretical analysis of the length,inclination angle,and propagation angle of micron-scale cracks,nor have they established appropriate criteria to describe the crack propagation process.The propagation mechanism of micron-scale cracks in red-bed soft rocks under hydraulic action is not yet fully understood,which makes it challenging to prevent engineering disasters in these types of rocks.To address this issue,we have used the existing generalized maximum tangential stress(GMTS)and generalized maximum energy release rate(GMERR)criteria as the basis and introduced parameters related to micron-scale crack propagation and water action.The GMTS and GMERR criteria for micronscale crack propagation in red-bed soft rocks under hydraulic action(abbreviated as the Wmic-GMTS and Wmic-GMERR criteria,respectively)were established to evaluate micron-scale crack propagation in redbed soft rocks under hydraulic action.The influence of the parameters was also described.The process of micron-scale crack propagation under hydraulic action was monitored using uniaxial compression tests(UCTs)based on digital image correlation(DIC)technology.The study analyzed the length,propagation and inclination angles,and mechanical parameters of micron-scale crack propagation to confirm the reliability of the established criteria.The findings suggest that the Wmic-GMTS and Wmic-GMERR criteria are effective in describing the micron-scale crack propagation in red-bed soft rocks under hydraulic action.This study discusses the mechanism of micron-scale crack propagation and its effect on engineering disasters under hydraulic action.It covers topics such as the internal-external weakening of nano-scale particles,lateral propagation of micron-scale cracks,weakening of the mechanical properties of millimeter-scale soft rocks,and resulting interface damage at the engineering scale.The study provides a theoretical basis for the mechanism of disasters in red-bed soft-rock engineering under hydraulic action.
基金funded by National Science Centre,Poland under the project"Assessment of the impact of weather conditions on forest health status and forest disturbances at regional and national scale based on the integration of ground and space-based remote sensing datasets"(project no.2021/41/B/ST10/)Data collection and research was also supported by the project no.EZ.271.3.19.2021"Modele ryzyka zamierania drzewostanow glownych gatunkow lasotworczych Polski"funded by the General Directorate of State Forests in Poland。
文摘Over the past decade,the presence of mistletoe(Viscum album ssp.austriacum)in Scots pine stands has increased in many European countries.Understanding the factors that influence the occurrence of mistletoe in stands is key to making appropriate forest management decisions to limit damage and prevent the spread of mistletoe in the future.Therefore,the main objective of this study was to determine the probability of mistletoe occurrence in Scots pine stands in relation to stand-related endogenous factors such as age,top height,and stand density,as well as topographic and edaphic factors.We used unmanned aerial vehicle(UAV)imagery from 2,247 stands to detect mistletoe in Scots pine stands,while majority stand and site characteristics were calculated from airborne laser scanning(ALS)data.Information on stand age and site type from the State Forest database were also used.We found that mistletoe infestation in Scots pine stands is influenced by stand and site characteristics.We documented that the densest,tallest,and oldest stands were more susceptible to mistletoe infestation.Site type and specific microsite conditions associated with topography were also important factors driving mistletoe occurrence.In addition,climatic water balance was a significant factor in increasing the probability of mistletoe occurrence,which is important in the context of predicted temperature increases associated with climate change.Our results are important for better understanding patterns of mistletoe infestation and ecosystem functioning under climate change.In an era of climate change and technological development,the use of remote sensing methods to determine the risk of mistletoe infestation can be a very useful tool for managing forest ecosystems to maintain forest sustainability and prevent forest disturbance.
基金funded by the Deanship of Scientific Research and Libraries,Princess Nourah bint Abdulrahman University,through the Program of Research Project Funding after Publication,Grant No.(RPFAP-34-1445).
文摘A novel inverted generalized gamma(IGG)distribution,proposed for data modelling with an upside-down bathtub hazard rate,is considered.In many real-world practical situations,when a researcher wants to conduct a comparative study of the life testing of items based on cost and duration of testing,censoring strategies are frequently used.From this point of view,in the presence of censored data compiled from the most well-known progressively Type-Ⅱ censoring technique,this study examines different parameters of the IGG distribution.From a classical point of view,the likelihood and product of spacing estimation methods are considered.Observed Fisher information and the deltamethod are used to obtain the approximate confidence intervals for any unknown parametric function of the suggestedmodel.In the Bayesian paradigm,the same traditional inferential approaches are used to estimate all unknown subjects.Markov-Chain with Monte-Carlo steps are considered to approximate all Bayes’findings.Extensive numerical comparisons are presented to examine the performance of the proposed methodologies using various criteria of accuracy.Further,using several optimality criteria,the optimumprogressive censoring design is suggested.To highlight how the proposed estimators can be used in practice and to verify the flexibility of the proposed model,we analyze the failure times of twenty mechanical components of a diesel engine.
基金supported by Natural Science Foundation of China(62071262)the K.C.Wong Magna Fund at Ningbo University.
文摘In this paper,we reconstruct strongly-decaying block sparse signals by the block generalized orthogonal matching pursuit(BgOMP)algorithm in the l2-bounded noise case.Under some restraints on the minimum magnitude of the nonzero elements of the strongly-decaying block sparse signal,if the sensing matrix satisfies the the block restricted isometry property(block-RIP),then arbitrary strongly-decaying block sparse signals can be accurately and steadily reconstructed by the BgOMP algorithm in iterations.Furthermore,we conjecture that this condition is sharp.