Tazarotene-induced gene 1(TIG1)is induced by a derivative of vitamin A and is known to regulate many important biological processes and control the development of cancer.TIG1 is widely expressed in various tissues;yet...Tazarotene-induced gene 1(TIG1)is induced by a derivative of vitamin A and is known to regulate many important biological processes and control the development of cancer.TIG1 is widely expressed in various tissues;yet in many cancer tissues,it is not expressed because of the methylation of its promoter.Additionally,the expression of TIG1 in cancer cells inhibits their growth and invasion,suggesting that TIG1 acts as a tumor suppressor gene.However,in some cancers,poor prognosis is associated with TIG1 expression,indicating its protumor growth characteristics,especially in promoting the invasion of inflammatory breast cancer cells.This review comprehensively summarizes the roles of the TIG1 gene in cancer development and details the mechanisms through which TIG1 regulates cancer development,with the aim of understanding its various roles in cancer development.展开更多
Objective:To discuss the relationship of ultrasonic shear wave velocity (SWV) with oncogene and tumor suppressor gene expression in primary liver cancer lesions as well as angiogenesis factor contents.Methods:100 pati...Objective:To discuss the relationship of ultrasonic shear wave velocity (SWV) with oncogene and tumor suppressor gene expression in primary liver cancer lesions as well as angiogenesis factor contents.Methods:100 patients with primary liver cancer who underwent surgical treatment in our hospital between March 2014 and September 2016 were collected as observation group, and 50 healthy subjects who received physical examination in our hospital during the same period were collected as normal control group. The ultrasonic SWV levels of two groups of subjects were measured before the operation, and the observation groups were further divided into high SWV group and low SWV group, 50 cases in each group. Intraoperative tumor tissue samples were kept and fluorescence quantitative PCR was used to determine the mRNA expression of oncogenes and tumor suppressor genes. Enzyme-linked immunosorbent assay was used to determine serum contents of angiogenesis factors in observation group before operation.Results:Hepatic ultrasonic SWV level in observation group was significantly higher than that in normal control group;proto-oncogene CK, Ki67, Gly-3, Survivin and Pokemon mRNA expression in tumor tissue of high SWV group were higher than those of low SWV group while tumor suppressor genes Tg737, p16, p27, PTEN and runx3 mRNA expression were lower than those of low SWV group;serum angiogenesis factors VEGF, MMP-9 and IGF-1R contents were higher than those in low SWV group. Conclusion: The hepatic ultrasonic SWV level increases in patients with primary liver cancer, and the SWV level is directly correlated with oncogene and tumor suppressor gene expression as well as angiogenesis factor contents.展开更多
Objective: To investigate whether deletion of chromosome 17 is involved in the carcinogenesis of primary glioblastoma multiforme and to localize the possible common deletion region in the aforementioned chromosome. Me...Objective: To investigate whether deletion of chromosome 17 is involved in the carcinogenesis of primary glioblastoma multiforme and to localize the possible common deletion region in the aforementioned chromosome. Methods: Polymerase chain reaction-based microsatellite analysis was used to assess loss of heterozygosity (LOH) on chromosome 17 in 20 primary glioblastoma multiforme (GBM). Fifteen fluorescent dye-labeled polymorphic markers were used. Results: Thirteen of twenty (65%) GBM displayed LOH on at least one marker of chromosome 17p. Two tumors showed either LOH or non-informativeness on all markers tested. The most frequent LOH was observed at loci including D17s799 (53.3%), D17s1852 (53.8%), D17s938 (63.20/o), D17s831 (55.6%). The loci D17s831 (on 17p13) and D17s799–D17s1852 (17p11.2–p12) are distal and proximal to p53 respectively. The frequencies of LOH at all loci examined on chromosome 17q were relatively low (<30%). None of informative loci exhibited microsatellite instability in this study. Conclusion: Loss of genetic material on chromosome 17p may play an important role in the pathogenesis of GBM. Besides the well-known TSG p53 on 17p, other unknown TSCs associated with GBM may be present on the chromosomal regions 17p13 and 17p11.2–p12, which are distal and proximal to p53 respectively.展开更多
Stomach adenocarcinoma (STAD) is the fifth most prevalent cancer and the third leading cause of cancer-related death in the world and is more common in Asia than in most Western countries. There is an urgent need to i...Stomach adenocarcinoma (STAD) is the fifth most prevalent cancer and the third leading cause of cancer-related death in the world and is more common in Asia than in most Western countries. There is an urgent need to identify potential novel oncogenes and tumor suppressor genes, and biomarkers for STAD. 6652 differentially expressed genes were identified between STAD and normal samples based on the transcriptome data analysis of the TCGA and GEO databases. 13 key modules were identified in STAD by WGCNA analysis. 293 potential STAD associated genes were identified from intersection by Venn Diagram. The 293 intersected genes were enriched in cell cortex and infection by GO and KEGG analysis. 10 hub genes were identified from PPI and Cytoscape analyses of the intersected genes. KLF4/CGN low and SHH/LIF high expression were associated with short overall survival of Asian STAD patients. Bioinformatics analysis revealed potential novel tumor suppressors (KLF4/CGN), oncogenes (SHH/LIF) and biomarkers for diagnosis, therapy and prognosis of STAD, specifically for Asian patients.展开更多
Objective: To investigate the correlation of Runt-related transcription factor 2 (RunX2) with proliferation genes, tumor suppressor genes and angiogenesis molecules in colon cancer lesions. Methods: A total of 90 pati...Objective: To investigate the correlation of Runt-related transcription factor 2 (RunX2) with proliferation genes, tumor suppressor genes and angiogenesis molecules in colon cancer lesions. Methods: A total of 90 patients with primary colon cancer were enrolled in colon cancer group, 68 patients with benign colon polyps were enrolled in colon polyps group, the differences in the expression levels of RunX2, proliferation genes, tumor suppressor genes and angiogenesis molecules in the two groups of lesions were compared, and Pearson test was further used to evaluate the correlation of RunX2 expression level with proliferation gene, tumor suppressor gene and angiogenesis molecule expression levels in colon cancer tissues. Results: RunX2 mRNA expression level in the lesions of colon cancer group was higher than that of colon polyps group. Proliferation genes GTPBP4, HOXB7, ZNF331, ADAM17 and HSP60 mRNA expression levels in the lesions of colon cancer group were higher than those of colon polyps group;tumor suppressor genes ATF3, FOXN3, OTUD1 and NDRG2 mRNA expression levels were lower than those of colon polyps group;angiogenesis molecules Musashi 1, NF-κB, RegⅣ and STAT3 mRNA expression levels were higher than those of colon polyps group. RunX2 mRNA expression level in the colon cancer lesions was directly correlated with the expression levels of the above proliferation genes, tumor suppressor genes and angiogenesis molecules. Conclusion: RunX2 expression is abnormally high in colon cancer lesions, the specific expression level is positively correlated with cancer cell proliferation activity and angiogenesis activity, and it is an important molecular target that can lead to the occurrence and development of colon cancer.展开更多
Esophageal squamous cell carcinoma(ESCC) is a prevalent and fatal cancer in China and other Asian countries.Epigenetic silencing of key tumor suppressor genes(TSGs) is critical to ESCC initiation and progression.Recen...Esophageal squamous cell carcinoma(ESCC) is a prevalent and fatal cancer in China and other Asian countries.Epigenetic silencing of key tumor suppressor genes(TSGs) is critical to ESCC initiation and progression.Recently,many novel TSGs silenced by promoter methylation have been identified in ESCC,and these genes further serve as potential tumor markers for high-risk group stratification,early detection,and prognosis prediction.This review summarizes recent discoveries on aberrant promoter methylation of TSGs in ESCC,providing better understanding of the role of disrupted epigenetic regulation in tumorigenesis and insight into diagnostic and prognostic biomarkers for this malignancy.展开更多
A number of tumor suppressor and tumor-related genes exhibit promoter hypermethylation with resultant gene silencing in human cancers.The frequencies of methylation differ among genes and genomic regions within CpG is...A number of tumor suppressor and tumor-related genes exhibit promoter hypermethylation with resultant gene silencing in human cancers.The frequencies of methylation differ among genes and genomic regions within CpG islands in different tissue types.Hypermethylation initially occurs at the edge of CpG islands and spreads to the transcription start site before ultimately shutting down gene expression.When the degree of methylation was quantitatively evaluated in neoplastic and non-neoplastic gastric epithelia using DNA microarray analysis,highlevel methylation around the transcription start site appeared to be a tumor-specific phenomenon,although multiple tumor suppressor genes became increasingly methylated with patient age in non-neoplastic gastric epithelia.Quantitative analysis of DNA methylation is a promising method for both cancer diagnosis and risk assessment.展开更多
Gastric cancer is one of the most common malignancies and a leading cause of cancer mortality worldwide.The pathogenesis mechanisms of gastric cancer are still not fully clear.Inactivation of tumor suppressor genes an...Gastric cancer is one of the most common malignancies and a leading cause of cancer mortality worldwide.The pathogenesis mechanisms of gastric cancer are still not fully clear.Inactivation of tumor suppressor genes and activation of oncogenes caused by genetic and epigenetic alterations are known to play significant roles in carcinogenesis.Accumulating evidence has shown that epigenetic silencing of the tumor suppressor genes,particularly caused by hypermethylation of CpG islands in promoters,is critical to carcinogenesis and metastasis.Here,we review the recent progress in the study of methylations of tumor suppressor genes involved in the pathogenesis of gastric cancer.We also briefly describe the mechanisms that induce tumor suppressor gene methylation and the status of translating these molecular mechanisms into clinical applications.展开更多
Objective: To investigate whether deletion of chromosome 3 is involved in the carcinogenesis of primary glioblastoma multiforme (GBM) and to localize the possible common deletion region in the aforementioned chromosom...Objective: To investigate whether deletion of chromosome 3 is involved in the carcinogenesis of primary glioblastoma multiforme (GBM) and to localize the possible common deletion region in the aforementioned chromosome. Methods: PCR based microsatellite polymorphism analyses were performed to detect loss of heterozygosity (LOH). Twenty-three loci on chromosome 3 were examined in 20 cases of GBM. Fluorescence-labeled primers and Perkin Elmer 377 DNA Sequencer were applied. Results: 50% informative cases of GBM displayed LOH on chromosome 3. 50% of informative cases displayed LOH on 3q and 35% on 3p. 25.6% of informative loci showed LOH in our series, in which frequent LOH were observed in the chromosomal region from loci D3S1614 (42.9%) to D3S1565 (35.3%) on 3q24–27 and at loci D3S1569 (35.3%) on 3q22–23 and D3S1289 (33.3%) on 3p14.1–14.3. Conclusion: Loss of genetic material on chromosome 3 may play an important part in the tumorigenesis of GBM. The chromosomal regions from loci D3S1614 to D3S1565 on 3q24–27 and at loci D3S1569 on 3q22–23 and D3S1289 on 3p14.1–14.3 are potential sites for novel tumor suppressor genes associated with GBM.展开更多
AIM: To study the candidate tumor suppressor genes (TSG) on chromosome 4p by detecting the high frequency of loss of heterozygosity (LOH) in sporadic colorectal carcinoma in Chinese patients.METHODS: Seven fluorescent...AIM: To study the candidate tumor suppressor genes (TSG) on chromosome 4p by detecting the high frequency of loss of heterozygosity (LOH) in sporadic colorectal carcinoma in Chinese patients.METHODS: Seven fluorescent labeled polymorphic microsatellite markers were analyzed in 83 cases of colorectal carcinoma and matched normal tissue DNA by PCR. PCR products were eletrophoresed on an ABI 377 DNA sequencer. Genescan 3.7 and Genotype 3.7 software were used for LOH scanning and analysis. The same procedure was performed by the other six microsatellite markers spanning D4S3013 locus to make further detailed deletion mapping. Comparison between LOH frequency and clinicopathological factors was performed by χ2 test.RESULTS: Data were collected from all informative loci. The average LOH frequency on 4p was 24.25%, and 42.3% and 35.62% on D4S405 and D4S3013 locus, respectively. Adjacent markers of D4S3013 displayed a low LOH frequency (< 30%) by detailed deletion mapping. Significant opposite difference was observed between LOH frequency and tumor diameter on D4S412 and D4S1546 locus (0% vs 16.67%, P = 0.041; 54.55% vs 11.11%, P = 0.034, respectively). On D4S403 locus, LOH was significantly associated with tumor gross pattern (11.11%, 0, 33.33%, P = 0.030). No relationship was detected on other loci compared with clinicopathologial features.CONCLUSION: By deletion mapping, two obvious high frequency LOH regions spanning D4S3013 (4p15.2) and D4S405 (4p14) locus are detected. Candidate TSG, which is involved in carcinogenesis and progression of sporadic colorectal carcinoma on chromosome 4p, may be located between D4S3017 and D4S2933 (about 1.7 cm).展开更多
Objective:To study the effect of cisplatin-based concurrent radiochemotherapy on the malignant degree of advanced cervical cancer and the expression of proto-oncogene and tumor suppressor genes.Methods: A total of 82 ...Objective:To study the effect of cisplatin-based concurrent radiochemotherapy on the malignant degree of advanced cervical cancer and the expression of proto-oncogene and tumor suppressor genes.Methods: A total of 82 patients with advanced cervical cancer who were treated in our hospital between July 2013 and December 2016 were collected and divided into control group and observation group according to random number table, with 41 cases in each group. The control group of patients received radiotherapy alone, while the observation group of patients received cisplatin-based concurrent radiochemotherapy. Tumor marker levels in serum as well as proto-oncogene and tumor suppressor gene expression in tumor tissue were compared between two groups of patients before and after treatment.Results:Before treatment, differences in tumor marker levels in serum as well as proto-oncogene and tumor suppressor gene expression in tumor tissue were not statistically significant between two groups of patients. After treatment, serum tumor markers SCC, CA50, CA724 and CEA levels of observation group were significantly lower than those of control group;proto-oncogene DEK, c-myc and PIK3CA mRNA expression in tumor tissue were significantly lower than those of control group;tumor suppressor genes p53, SOCS-1, FHIT and PTEN mRNA expression in tumor tissue were significantly higher than those of control group.Conclusions:Cisplatin-based concurrent radiochemotherapy can effectively reduce the tumor malignancy and balance the proto-oncogene / tumor suppressor gene expression in patients with advanced cervical cancer.展开更多
Atypical teratoid/rhabdoid tumor(ATRT)is a rare childhood malignancy that originates in the central nervous system.Over ninety-five percent of ATRT patients have biallelic inactivation of the tumor suppressor gene SMA...Atypical teratoid/rhabdoid tumor(ATRT)is a rare childhood malignancy that originates in the central nervous system.Over ninety-five percent of ATRT patients have biallelic inactivation of the tumor suppressor gene SMARCB1.ATRT has no standard treatment,and a major limiting factor in therapeutic development is the lack of reliable ATRT models.We employed CRISPR/Cas9 gene-editing technology to knock out SMARCB1 and TP53 genes in human episomal induced pluripotent stem cells(Epi-iPSCs),followed by brief neural induction,to generate an ATRT-like model.The dual knockout Epi-iPSCs retained their stemness with the capacity to differentiate into three germ layers.High expression of OCT4 and NANOG in neurally induced knockout spheroids was comparable to that in two ATRT cell lines.Beta-catenin protein expression was higher in SMARCB1-deficient cells and spheroids than in normal Epi-iPSC-derived spheroids.Nucleophosmin,Osteopontin,and Ki-67 proteins were also expressed by the SMARCB1-deficient spheroids.In summary,the tumor model resembled embryonal features of ATRT and expressed ATRT biomarkers at mRNA and protein levels.Ribociclib,PTC-209,and the combination of clofilium tosylate and pazopanib decreased the viability of the ATRT-like cells.This disease modeling scheme may enable the establishment of individualized tumor models with patient-specific mutations and facilitate high-throughput drug testing.展开更多
BACKGROUND Hepatocellular carcinoma(HCC)is a major cause of cancer mortality worldwide,and metastasis is the main cause of early recurrence and poor prognosis.However,the mechanism of metastasis remains poorly underst...BACKGROUND Hepatocellular carcinoma(HCC)is a major cause of cancer mortality worldwide,and metastasis is the main cause of early recurrence and poor prognosis.However,the mechanism of metastasis remains poorly understood.AIM To determine the possible mechanism affecting HCC metastasis and provide a possible theoretical basis for HCC treatment.METHODS The candidate molecule lecithin-cholesterol acyltransferase(LCAT)was screened by gene microarray and bioinformatics analysis.The expression levels of LCAT in clinical cohort samples was detected by quantitative realtime polymerase chain reaction and western blotting.The proliferation,migration,invasion and tumor-forming ability were measured by Cell Counting Kit-8,Transwell cell migration,invasion,and clonal formation assays,respectively.Tumor formation was detected in nude mice after LCAT gene knockdown or overexpression.The immunohistochemistry for Ki67,E-cadherin,N-cadherin,matrix metalloproteinase 9 and vascular endothelial growth factor were performed in liver tissues to assess the effect of LCAT on HCC.Gene set enrichment analysis(GSEA)on various gene signatures were analyzed with GSEA version 3.0.Three machine-learning algorithms(random forest,support vector machine,and logistic regression)were applied to predict HCC metastasis in The Cancer Genome Atlas and GEO databases.RESULTS LCAT was identified as a novel gene relating to HCC metastasis by using gene microarray in HCC tissues.LCAT was significantly downregulated in HCC tissues,which is correlated with recurrence,metastasis and poor outcome of HCC patients.Functional analysis indicated that LCAT inhibited HCC cell proliferation,migration and invasion both in vitro and in vivo.Clinicopathological data showed that LCAT was negatively associated with HCC size and metastasis(HCC size≤3 cm vs 3-9 cm,P<0.001;3-9 cm vs>9 cm,P<0.01;metastatic-free HCC vs extrahepatic metastatic HCC,P<0.05).LCAT suppressed the growth,migration and invasion of HCC cell lines via PI3K/AKT/mTOR signaling.Our results indicated that the logistic regression model based on LCAT,TNM stage and the serum level of α-fetoprotein in HCC patients could effectively predict high metastatic risk HCC patients.CONCLUSION LCAT is downregulated at translational and protein levels in HCC and might inhibit tumor metastasis via attenuating PI3K/AKT/mTOR signaling.LCAT is a prognostic marker and potential therapeutic target for HCC.展开更多
AIM To analyse cumulative loss of heterozygosity (LOH) of chromosomal regions and tumor suppressor genes in hepatocellular carcinomas (HCCs) from 20 southern African blacks. METHODS p53, RB1, BRCA1, BRCA2, WT1 and E c...AIM To analyse cumulative loss of heterozygosity (LOH) of chromosomal regions and tumor suppressor genes in hepatocellular carcinomas (HCCs) from 20 southern African blacks. METHODS p53, RB1, BRCA1, BRCA2, WT1 and E cadherin genes were analysed for LOH, and p53 gene was also analysed for the codon 249 mutation, in tumor and adjacent non tumorous liver tissues using molecular techniques and 10 polymorphic microsatellite markers. RESULTS p53 codon 249 mutation was found in 25% of the subjects, as was expected, because many patients were from Mozambique, a country with high aflatoxin B 1 exposure. LOH was found at the RB1, BRCA2 and WT1 loci in 20%(4/*!20) of the HCCs, supporting a possible role of these genes in HCC. No LOH was evident in any of the remaining genes. Reports of mutations of p53 and RB1 genes in combination, described in other populations, were not confirmed in this study. Change in microsatellite repeat number was noted at 9/*!10 microsatellite loci in different HCCs, and changes at two or more loci were detected in 15%(3/*!20) of subjects. CONCLUSION We propose that microsatellite/genomic instability may play a role in the pathogenesis of a subset of HCCs in black Africans.展开更多
The multifactorial and multistage pathogenesis of hepatocellular carcinoma(HCC)has fascinated a wide spectrum of scientists for decades.While a number of major risk factors have been identified,their mechanistic roles...The multifactorial and multistage pathogenesis of hepatocellular carcinoma(HCC)has fascinated a wide spectrum of scientists for decades.While a number of major risk factors have been identified,their mechanistic roles in hepatocarcinogenesis still need to be elucidated.Many tumor suppressor genes(TSGs)have been identified as being involved in HCC.These TSGs can be classified into two groups depending on the situation with respect to allelic mutation/loss in the tumors:the recessive TSGs with two required mutated alleles and the haploinsufficient TSGs with one required mutated allele.Hepatitis B virus(HBV)is one of the most important risk factors associated with HCC.Although mice cannot be infected with HBV due to the narrow host range of HBV and the lack of a proper receptor,one advantage of mouse models for HBV/HCC research is the numerous and powerfulgenetic tools that help investigate the phenotypic effects of viral proteins and allow the dissection of the dose-dependent action of TSGs.Here,we mainly focus on the application of mouse models in relation to HBV-associated HCC and on TSGs that act either in a recessive or in a haploinsufficient manner.Discoveries obtained using mouse models will have a great impact on HCC translational medicine.展开更多
Nasopharyngeal carcinoma (NPC) is among the most common malignancies in southern China.Deletion of genomic DNA,which occurs during the complex pathogenesis process for NPC,represents a pivotal mechanism in the inactiv...Nasopharyngeal carcinoma (NPC) is among the most common malignancies in southern China.Deletion of genomic DNA,which occurs during the complex pathogenesis process for NPC,represents a pivotal mechanism in the inactivation of tumor suppressor genes (TSGs).In many circumstances,loss of TSGs can be detected as diagnostic and prognostic markers in cancer.The short arm of chromosome 3 (3p) is a frequently deleted chromosomal region in NPC,with 3p21.1-21.2 and 3p25.2-26.1 being the most frequently deleted minimal regions.In recent years,our research group and others have focused on the identification and characterization of novel target TSGs at 3p,such as RASSF1A,BLU,RBMS3,and CHL1,in the development and progression of NPC.In this review,we summarize recent findings of TSGs at 3p and discuss some of these genes in detail.A better understanding of TSGs at 3p will significantly improve our understanding of NPC pathogenesis,diagnosis,and treatment.展开更多
OBJECTIVE: To evaluate whether deletion of chromosome 14q is involved in the carcinogenesis of primary glioblastoma multiforme and to identify possibly common deletion regions. METHJODS: Fourteen fluorescent dye-label...OBJECTIVE: To evaluate whether deletion of chromosome 14q is involved in the carcinogenesis of primary glioblastoma multiforme and to identify possibly common deletion regions. METHJODS: Fourteen fluorescent dye-labeled polymorphic markers were used and polymerase chain reaction-based microsatellite analysis was employed to investigate loss of heterozygosity (LOH) on chromosome 14q in 20 primary glioblastoma multiforme (GBM). RESULTS: Ten of twenty (50%) GBM displayed LOH at one or more of the markers on chromosome 14q. Five tumors showed either LOH or non-informative on all markers tested. The most frequent LOH was observed at locus D14S65 (57.1%) on 14q32.1, and in the chromosomal region spanning from D14S63 (47.1%) to D14S74 (46.7%) on 14q23-31. None of the informative loci exhibited microsatellite instability. CONCLUSIONS: Allelic deletion on chromosome 14q plays an important role in the pathogenesis of GBM. Chromosomal regions at locus D14S65 on 14q32.1 and spanning from D14S63 to D14S74 on 14q23-31 may harbor multiple tumor suppressor genes associated with GBM.展开更多
AIMS To examine the prevalance of p53 mutations in hepatocellular carcinoma (HCC) from Chongqing area and the relationship between the p53 mutations and clinicopathological features of HCC,as well as the risk factors....AIMS To examine the prevalance of p53 mutations in hepatocellular carcinoma (HCC) from Chongqing area and the relationship between the p53 mutations and clinicopathological features of HCC,as well as the risk factors. METHODS The overexpression and point mutations of tumor suppressor gene p53 in 38 cases of HCC were detected by a sensitive antigen retrieval fluid (ARF) immunohistochemical method and polymerase chain re- action(PCR)-restriction fragment length polymorphism (RFLP),and single strand conformation polymorphism (SSCP)-silver staining analysis. RESULTS The results showed that 16 of 38 HCCs had positive p53 protein (42.1%),7 HCCs had p53 mutation at 249 (18.4 % ) and 2 HCCS had point muta- tion within exon 7 other than 249. Among 9 cases of HCC with mutations,8 cases demonstrated positive p53 protein,its coincidental rate was 88.9%. The overexpression and mutations of p53 were significantly related to the differentiation and metastasis of HCCs. The frequency of p53 mutations was consistent with high prevalence of HBV and a moderate aflatoxin B1 (AFB1) exposure in our area. CONCLUSIONS The results suggest that AFB1 acts synergistically with HBV in the generation of p53 mutations. Furthermore,dietary exposure to AFB1 may mainly contribute to the tumor specific mutation at codon 249,while HBV may account for other scattered mutations in HCC.展开更多
Breast cancer is the leading cause for mortality among women worldwide.Dysregulation of oncogenes and tumor suppressor genes is the major reason for the cause of cancer.Understanding these genes will provide clues and...Breast cancer is the leading cause for mortality among women worldwide.Dysregulation of oncogenes and tumor suppressor genes is the major reason for the cause of cancer.Understanding these genes will provide clues and insights about their regulatory mechanism and their interplay in cancer.In the present study,an attempt is made to compare the functional characteristics and interactions of oncogenes and tumor suppressor genes to understand their biological role.431 breast cancer samples from seven publicly available microarray datasets were collected and analysed using GEO2R tool.The identified 416 differentially expressed genes were classified into five gene sets as oncogenes(OG),tumor suppressor genes(TSG),druggable genes,essential genes and other genes.The gene sets were subjected to various analysis such as enrichment analysis(viz.,GO,Pathways,Diseases and Drugs),network analysis,calculation of mutation frequencies and Guanine-Cytosine(GC)content.From the results,it was observed that the OG were having high GC content as well as high interactions than TSG.Moreover,the OG are found to have frequent mutations than TSG.The enrichment analysis results suggest that the oncogenes are involved in positive regulation of cellular protein metabolic process,macromolecule biosynthetic process and majorly in cell cycle and focal adhesion pathway in cancer.It was also found that these oncogenes are involved in other diseases such as skin diseases and viral infections.Collagenase,paclitaxel and docetaxel are some of the drugs found to be enriched for oncogenes.展开更多
Objective: Oncogenes have been shown to be drivers of non-small cell lung cancer(NSCLC), yet the tumor suppressing genes involved in lung carcinogenesis remain to be systematically investigated. This study aimed to id...Objective: Oncogenes have been shown to be drivers of non-small cell lung cancer(NSCLC), yet the tumor suppressing genes involved in lung carcinogenesis remain to be systematically investigated. This study aimed to identify tumor suppressing ubiquitin pathway genes(UPGs) that were critical to lung tumorigenesis.Methods: The 696 UPGs were silenced by an siRNA screening in NSCLC cells;the potential tumor suppressing UPGs were analyzed, and their clinical significance was investigated.Results: We reported that silencing of 11 UPGs resulted in enhanced proliferation of NSCLC cells, and four UPGs(UBL3, TRIM22, UBE2 G2, and MARCH1) were significantly downregulated in tumor samples compared to that in normal lung tissues and their expression levels were positively associated with overall survival(OS) of NSCLC patients. Among these genes, UBL3 was the most significant one. UBL3 expression was decreased in tumor samples compared to that in paired normal lung tissues in 59/86(68.6%) NSCLCs, was correlated with TNM stage and sex of NSCLC patients, and was significantly higher in non-smoking patients than in smoking patients. Silencing UBL3 accelerated cell proliferation and ectopic expression of UBL3 suppressed NSCLC in vitro and in vivo.Conclusions: These results showed that UBL3 represented a tumor suppressor in NSCLC and may have potential for use in therapeutics and for the prediction of clinical outcome of patients.展开更多
基金supported by the Taipei Tzu Chi Hospital through grants from the Buddhist Tzu Chi Medical Foundation under the Numbers TCRD-TPE-111-23(2/3)and TCRD-TPE-113-20,Taipei,Taiwan.
文摘Tazarotene-induced gene 1(TIG1)is induced by a derivative of vitamin A and is known to regulate many important biological processes and control the development of cancer.TIG1 is widely expressed in various tissues;yet in many cancer tissues,it is not expressed because of the methylation of its promoter.Additionally,the expression of TIG1 in cancer cells inhibits their growth and invasion,suggesting that TIG1 acts as a tumor suppressor gene.However,in some cancers,poor prognosis is associated with TIG1 expression,indicating its protumor growth characteristics,especially in promoting the invasion of inflammatory breast cancer cells.This review comprehensively summarizes the roles of the TIG1 gene in cancer development and details the mechanisms through which TIG1 regulates cancer development,with the aim of understanding its various roles in cancer development.
基金Natural Science Foundation of China No:81170108.
文摘Objective:To discuss the relationship of ultrasonic shear wave velocity (SWV) with oncogene and tumor suppressor gene expression in primary liver cancer lesions as well as angiogenesis factor contents.Methods:100 patients with primary liver cancer who underwent surgical treatment in our hospital between March 2014 and September 2016 were collected as observation group, and 50 healthy subjects who received physical examination in our hospital during the same period were collected as normal control group. The ultrasonic SWV levels of two groups of subjects were measured before the operation, and the observation groups were further divided into high SWV group and low SWV group, 50 cases in each group. Intraoperative tumor tissue samples were kept and fluorescence quantitative PCR was used to determine the mRNA expression of oncogenes and tumor suppressor genes. Enzyme-linked immunosorbent assay was used to determine serum contents of angiogenesis factors in observation group before operation.Results:Hepatic ultrasonic SWV level in observation group was significantly higher than that in normal control group;proto-oncogene CK, Ki67, Gly-3, Survivin and Pokemon mRNA expression in tumor tissue of high SWV group were higher than those of low SWV group while tumor suppressor genes Tg737, p16, p27, PTEN and runx3 mRNA expression were lower than those of low SWV group;serum angiogenesis factors VEGF, MMP-9 and IGF-1R contents were higher than those in low SWV group. Conclusion: The hepatic ultrasonic SWV level increases in patients with primary liver cancer, and the SWV level is directly correlated with oncogene and tumor suppressor gene expression as well as angiogenesis factor contents.
文摘Objective: To investigate whether deletion of chromosome 17 is involved in the carcinogenesis of primary glioblastoma multiforme and to localize the possible common deletion region in the aforementioned chromosome. Methods: Polymerase chain reaction-based microsatellite analysis was used to assess loss of heterozygosity (LOH) on chromosome 17 in 20 primary glioblastoma multiforme (GBM). Fifteen fluorescent dye-labeled polymorphic markers were used. Results: Thirteen of twenty (65%) GBM displayed LOH on at least one marker of chromosome 17p. Two tumors showed either LOH or non-informativeness on all markers tested. The most frequent LOH was observed at loci including D17s799 (53.3%), D17s1852 (53.8%), D17s938 (63.20/o), D17s831 (55.6%). The loci D17s831 (on 17p13) and D17s799–D17s1852 (17p11.2–p12) are distal and proximal to p53 respectively. The frequencies of LOH at all loci examined on chromosome 17q were relatively low (<30%). None of informative loci exhibited microsatellite instability in this study. Conclusion: Loss of genetic material on chromosome 17p may play an important role in the pathogenesis of GBM. Besides the well-known TSG p53 on 17p, other unknown TSCs associated with GBM may be present on the chromosomal regions 17p13 and 17p11.2–p12, which are distal and proximal to p53 respectively.
文摘Stomach adenocarcinoma (STAD) is the fifth most prevalent cancer and the third leading cause of cancer-related death in the world and is more common in Asia than in most Western countries. There is an urgent need to identify potential novel oncogenes and tumor suppressor genes, and biomarkers for STAD. 6652 differentially expressed genes were identified between STAD and normal samples based on the transcriptome data analysis of the TCGA and GEO databases. 13 key modules were identified in STAD by WGCNA analysis. 293 potential STAD associated genes were identified from intersection by Venn Diagram. The 293 intersected genes were enriched in cell cortex and infection by GO and KEGG analysis. 10 hub genes were identified from PPI and Cytoscape analyses of the intersected genes. KLF4/CGN low and SHH/LIF high expression were associated with short overall survival of Asian STAD patients. Bioinformatics analysis revealed potential novel tumor suppressors (KLF4/CGN), oncogenes (SHH/LIF) and biomarkers for diagnosis, therapy and prognosis of STAD, specifically for Asian patients.
文摘Objective: To investigate the correlation of Runt-related transcription factor 2 (RunX2) with proliferation genes, tumor suppressor genes and angiogenesis molecules in colon cancer lesions. Methods: A total of 90 patients with primary colon cancer were enrolled in colon cancer group, 68 patients with benign colon polyps were enrolled in colon polyps group, the differences in the expression levels of RunX2, proliferation genes, tumor suppressor genes and angiogenesis molecules in the two groups of lesions were compared, and Pearson test was further used to evaluate the correlation of RunX2 expression level with proliferation gene, tumor suppressor gene and angiogenesis molecule expression levels in colon cancer tissues. Results: RunX2 mRNA expression level in the lesions of colon cancer group was higher than that of colon polyps group. Proliferation genes GTPBP4, HOXB7, ZNF331, ADAM17 and HSP60 mRNA expression levels in the lesions of colon cancer group were higher than those of colon polyps group;tumor suppressor genes ATF3, FOXN3, OTUD1 and NDRG2 mRNA expression levels were lower than those of colon polyps group;angiogenesis molecules Musashi 1, NF-κB, RegⅣ and STAT3 mRNA expression levels were higher than those of colon polyps group. RunX2 mRNA expression level in the colon cancer lesions was directly correlated with the expression levels of the above proliferation genes, tumor suppressor genes and angiogenesis molecules. Conclusion: RunX2 expression is abnormally high in colon cancer lesions, the specific expression level is positively correlated with cancer cell proliferation activity and angiogenesis activity, and it is an important molecular target that can lead to the occurrence and development of colon cancer.
基金supported by NSFC Joint Research Fund for Hong Kong and Macao Young Scholars(No.30928012)National Natural Science Foundation of China(No.81071634,81172582,and 30801344)Shenzhen Science Fund for Distinguished Young Scholars(No.JC201005270328A)
文摘Esophageal squamous cell carcinoma(ESCC) is a prevalent and fatal cancer in China and other Asian countries.Epigenetic silencing of key tumor suppressor genes(TSGs) is critical to ESCC initiation and progression.Recently,many novel TSGs silenced by promoter methylation have been identified in ESCC,and these genes further serve as potential tumor markers for high-risk group stratification,early detection,and prognosis prediction.This review summarizes recent discoveries on aberrant promoter methylation of TSGs in ESCC,providing better understanding of the role of disrupted epigenetic regulation in tumorigenesis and insight into diagnostic and prognostic biomarkers for this malignancy.
文摘A number of tumor suppressor and tumor-related genes exhibit promoter hypermethylation with resultant gene silencing in human cancers.The frequencies of methylation differ among genes and genomic regions within CpG islands in different tissue types.Hypermethylation initially occurs at the edge of CpG islands and spreads to the transcription start site before ultimately shutting down gene expression.When the degree of methylation was quantitatively evaluated in neoplastic and non-neoplastic gastric epithelia using DNA microarray analysis,highlevel methylation around the transcription start site appeared to be a tumor-specific phenomenon,although multiple tumor suppressor genes became increasingly methylated with patient age in non-neoplastic gastric epithelia.Quantitative analysis of DNA methylation is a promising method for both cancer diagnosis and risk assessment.
基金supported by grants from National Natural Science Foundation of China(No.30770920 and 81071651)Zhejiang Provincial Natural Science Foundation of China(No.R2100213,2009C33142,Z2090056 and WKJ2009-2-028)973 Project(No.2010CB834300)
文摘Gastric cancer is one of the most common malignancies and a leading cause of cancer mortality worldwide.The pathogenesis mechanisms of gastric cancer are still not fully clear.Inactivation of tumor suppressor genes and activation of oncogenes caused by genetic and epigenetic alterations are known to play significant roles in carcinogenesis.Accumulating evidence has shown that epigenetic silencing of the tumor suppressor genes,particularly caused by hypermethylation of CpG islands in promoters,is critical to carcinogenesis and metastasis.Here,we review the recent progress in the study of methylations of tumor suppressor genes involved in the pathogenesis of gastric cancer.We also briefly describe the mechanisms that induce tumor suppressor gene methylation and the status of translating these molecular mechanisms into clinical applications.
文摘Objective: To investigate whether deletion of chromosome 3 is involved in the carcinogenesis of primary glioblastoma multiforme (GBM) and to localize the possible common deletion region in the aforementioned chromosome. Methods: PCR based microsatellite polymorphism analyses were performed to detect loss of heterozygosity (LOH). Twenty-three loci on chromosome 3 were examined in 20 cases of GBM. Fluorescence-labeled primers and Perkin Elmer 377 DNA Sequencer were applied. Results: 50% informative cases of GBM displayed LOH on chromosome 3. 50% of informative cases displayed LOH on 3q and 35% on 3p. 25.6% of informative loci showed LOH in our series, in which frequent LOH were observed in the chromosomal region from loci D3S1614 (42.9%) to D3S1565 (35.3%) on 3q24–27 and at loci D3S1569 (35.3%) on 3q22–23 and D3S1289 (33.3%) on 3p14.1–14.3. Conclusion: Loss of genetic material on chromosome 3 may play an important part in the tumorigenesis of GBM. The chromosomal regions from loci D3S1614 to D3S1565 on 3q24–27 and at loci D3S1569 on 3q22–23 and D3S1289 on 3p14.1–14.3 are potential sites for novel tumor suppressor genes associated with GBM.
基金Supported by The National Natural Science Foundation of China, No. 30080016 and No. 30470977
文摘AIM: To study the candidate tumor suppressor genes (TSG) on chromosome 4p by detecting the high frequency of loss of heterozygosity (LOH) in sporadic colorectal carcinoma in Chinese patients.METHODS: Seven fluorescent labeled polymorphic microsatellite markers were analyzed in 83 cases of colorectal carcinoma and matched normal tissue DNA by PCR. PCR products were eletrophoresed on an ABI 377 DNA sequencer. Genescan 3.7 and Genotype 3.7 software were used for LOH scanning and analysis. The same procedure was performed by the other six microsatellite markers spanning D4S3013 locus to make further detailed deletion mapping. Comparison between LOH frequency and clinicopathological factors was performed by χ2 test.RESULTS: Data were collected from all informative loci. The average LOH frequency on 4p was 24.25%, and 42.3% and 35.62% on D4S405 and D4S3013 locus, respectively. Adjacent markers of D4S3013 displayed a low LOH frequency (< 30%) by detailed deletion mapping. Significant opposite difference was observed between LOH frequency and tumor diameter on D4S412 and D4S1546 locus (0% vs 16.67%, P = 0.041; 54.55% vs 11.11%, P = 0.034, respectively). On D4S403 locus, LOH was significantly associated with tumor gross pattern (11.11%, 0, 33.33%, P = 0.030). No relationship was detected on other loci compared with clinicopathologial features.CONCLUSION: By deletion mapping, two obvious high frequency LOH regions spanning D4S3013 (4p15.2) and D4S405 (4p14) locus are detected. Candidate TSG, which is involved in carcinogenesis and progression of sporadic colorectal carcinoma on chromosome 4p, may be located between D4S3017 and D4S2933 (about 1.7 cm).
文摘Objective:To study the effect of cisplatin-based concurrent radiochemotherapy on the malignant degree of advanced cervical cancer and the expression of proto-oncogene and tumor suppressor genes.Methods: A total of 82 patients with advanced cervical cancer who were treated in our hospital between July 2013 and December 2016 were collected and divided into control group and observation group according to random number table, with 41 cases in each group. The control group of patients received radiotherapy alone, while the observation group of patients received cisplatin-based concurrent radiochemotherapy. Tumor marker levels in serum as well as proto-oncogene and tumor suppressor gene expression in tumor tissue were compared between two groups of patients before and after treatment.Results:Before treatment, differences in tumor marker levels in serum as well as proto-oncogene and tumor suppressor gene expression in tumor tissue were not statistically significant between two groups of patients. After treatment, serum tumor markers SCC, CA50, CA724 and CEA levels of observation group were significantly lower than those of control group;proto-oncogene DEK, c-myc and PIK3CA mRNA expression in tumor tissue were significantly lower than those of control group;tumor suppressor genes p53, SOCS-1, FHIT and PTEN mRNA expression in tumor tissue were significantly higher than those of control group.Conclusions:Cisplatin-based concurrent radiochemotherapy can effectively reduce the tumor malignancy and balance the proto-oncogene / tumor suppressor gene expression in patients with advanced cervical cancer.
文摘Atypical teratoid/rhabdoid tumor(ATRT)is a rare childhood malignancy that originates in the central nervous system.Over ninety-five percent of ATRT patients have biallelic inactivation of the tumor suppressor gene SMARCB1.ATRT has no standard treatment,and a major limiting factor in therapeutic development is the lack of reliable ATRT models.We employed CRISPR/Cas9 gene-editing technology to knock out SMARCB1 and TP53 genes in human episomal induced pluripotent stem cells(Epi-iPSCs),followed by brief neural induction,to generate an ATRT-like model.The dual knockout Epi-iPSCs retained their stemness with the capacity to differentiate into three germ layers.High expression of OCT4 and NANOG in neurally induced knockout spheroids was comparable to that in two ATRT cell lines.Beta-catenin protein expression was higher in SMARCB1-deficient cells and spheroids than in normal Epi-iPSC-derived spheroids.Nucleophosmin,Osteopontin,and Ki-67 proteins were also expressed by the SMARCB1-deficient spheroids.In summary,the tumor model resembled embryonal features of ATRT and expressed ATRT biomarkers at mRNA and protein levels.Ribociclib,PTC-209,and the combination of clofilium tosylate and pazopanib decreased the viability of the ATRT-like cells.This disease modeling scheme may enable the establishment of individualized tumor models with patient-specific mutations and facilitate high-throughput drug testing.
基金Supported by the National Natural Science Foundation of China,No.92159305National Key R&D Program of China,No.2023YFC2308104.
文摘BACKGROUND Hepatocellular carcinoma(HCC)is a major cause of cancer mortality worldwide,and metastasis is the main cause of early recurrence and poor prognosis.However,the mechanism of metastasis remains poorly understood.AIM To determine the possible mechanism affecting HCC metastasis and provide a possible theoretical basis for HCC treatment.METHODS The candidate molecule lecithin-cholesterol acyltransferase(LCAT)was screened by gene microarray and bioinformatics analysis.The expression levels of LCAT in clinical cohort samples was detected by quantitative realtime polymerase chain reaction and western blotting.The proliferation,migration,invasion and tumor-forming ability were measured by Cell Counting Kit-8,Transwell cell migration,invasion,and clonal formation assays,respectively.Tumor formation was detected in nude mice after LCAT gene knockdown or overexpression.The immunohistochemistry for Ki67,E-cadherin,N-cadherin,matrix metalloproteinase 9 and vascular endothelial growth factor were performed in liver tissues to assess the effect of LCAT on HCC.Gene set enrichment analysis(GSEA)on various gene signatures were analyzed with GSEA version 3.0.Three machine-learning algorithms(random forest,support vector machine,and logistic regression)were applied to predict HCC metastasis in The Cancer Genome Atlas and GEO databases.RESULTS LCAT was identified as a novel gene relating to HCC metastasis by using gene microarray in HCC tissues.LCAT was significantly downregulated in HCC tissues,which is correlated with recurrence,metastasis and poor outcome of HCC patients.Functional analysis indicated that LCAT inhibited HCC cell proliferation,migration and invasion both in vitro and in vivo.Clinicopathological data showed that LCAT was negatively associated with HCC size and metastasis(HCC size≤3 cm vs 3-9 cm,P<0.001;3-9 cm vs>9 cm,P<0.01;metastatic-free HCC vs extrahepatic metastatic HCC,P<0.05).LCAT suppressed the growth,migration and invasion of HCC cell lines via PI3K/AKT/mTOR signaling.Our results indicated that the logistic regression model based on LCAT,TNM stage and the serum level of α-fetoprotein in HCC patients could effectively predict high metastatic risk HCC patients.CONCLUSION LCAT is downregulated at translational and protein levels in HCC and might inhibit tumor metastasis via attenuating PI3K/AKT/mTOR signaling.LCAT is a prognostic marker and potential therapeutic target for HCC.
文摘AIM To analyse cumulative loss of heterozygosity (LOH) of chromosomal regions and tumor suppressor genes in hepatocellular carcinomas (HCCs) from 20 southern African blacks. METHODS p53, RB1, BRCA1, BRCA2, WT1 and E cadherin genes were analysed for LOH, and p53 gene was also analysed for the codon 249 mutation, in tumor and adjacent non tumorous liver tissues using molecular techniques and 10 polymorphic microsatellite markers. RESULTS p53 codon 249 mutation was found in 25% of the subjects, as was expected, because many patients were from Mozambique, a country with high aflatoxin B 1 exposure. LOH was found at the RB1, BRCA2 and WT1 loci in 20%(4/*!20) of the HCCs, supporting a possible role of these genes in HCC. No LOH was evident in any of the remaining genes. Reports of mutations of p53 and RB1 genes in combination, described in other populations, were not confirmed in this study. Change in microsatellite repeat number was noted at 9/*!10 microsatellite loci in different HCCs, and changes at two or more loci were detected in 15%(3/*!20) of subjects. CONCLUSION We propose that microsatellite/genomic instability may play a role in the pathogenesis of a subset of HCCs in black Africans.
基金Supported by Research grants from the Ministry of Science and Technology(MOST)in Taiwan,No.NSC99-2628-B-010-001-MY3,MOST 103-2321-B-010-003,MOST 103-2633-H-010-001,MOST 103-2633-B-400-002 and MOST104-3011-B-010-001a grant from the Ministry of Education,Aim for the Top University Plan
文摘The multifactorial and multistage pathogenesis of hepatocellular carcinoma(HCC)has fascinated a wide spectrum of scientists for decades.While a number of major risk factors have been identified,their mechanistic roles in hepatocarcinogenesis still need to be elucidated.Many tumor suppressor genes(TSGs)have been identified as being involved in HCC.These TSGs can be classified into two groups depending on the situation with respect to allelic mutation/loss in the tumors:the recessive TSGs with two required mutated alleles and the haploinsufficient TSGs with one required mutated allele.Hepatitis B virus(HBV)is one of the most important risk factors associated with HCC.Although mice cannot be infected with HBV due to the narrow host range of HBV and the lack of a proper receptor,one advantage of mouse models for HBV/HCC research is the numerous and powerfulgenetic tools that help investigate the phenotypic effects of viral proteins and allow the dissection of the dose-dependent action of TSGs.Here,we mainly focus on the application of mouse models in relation to HBV-associated HCC and on TSGs that act either in a recessive or in a haploinsufficient manner.Discoveries obtained using mouse models will have a great impact on HCC translational medicine.
文摘Nasopharyngeal carcinoma (NPC) is among the most common malignancies in southern China.Deletion of genomic DNA,which occurs during the complex pathogenesis process for NPC,represents a pivotal mechanism in the inactivation of tumor suppressor genes (TSGs).In many circumstances,loss of TSGs can be detected as diagnostic and prognostic markers in cancer.The short arm of chromosome 3 (3p) is a frequently deleted chromosomal region in NPC,with 3p21.1-21.2 and 3p25.2-26.1 being the most frequently deleted minimal regions.In recent years,our research group and others have focused on the identification and characterization of novel target TSGs at 3p,such as RASSF1A,BLU,RBMS3,and CHL1,in the development and progression of NPC.In this review,we summarize recent findings of TSGs at 3p and discuss some of these genes in detail.A better understanding of TSGs at 3p will significantly improve our understanding of NPC pathogenesis,diagnosis,and treatment.
文摘OBJECTIVE: To evaluate whether deletion of chromosome 14q is involved in the carcinogenesis of primary glioblastoma multiforme and to identify possibly common deletion regions. METHJODS: Fourteen fluorescent dye-labeled polymorphic markers were used and polymerase chain reaction-based microsatellite analysis was employed to investigate loss of heterozygosity (LOH) on chromosome 14q in 20 primary glioblastoma multiforme (GBM). RESULTS: Ten of twenty (50%) GBM displayed LOH at one or more of the markers on chromosome 14q. Five tumors showed either LOH or non-informative on all markers tested. The most frequent LOH was observed at locus D14S65 (57.1%) on 14q32.1, and in the chromosomal region spanning from D14S63 (47.1%) to D14S74 (46.7%) on 14q23-31. None of the informative loci exhibited microsatellite instability. CONCLUSIONS: Allelic deletion on chromosome 14q plays an important role in the pathogenesis of GBM. Chromosomal regions at locus D14S65 on 14q32.1 and spanning from D14S63 to D14S74 on 14q23-31 may harbor multiple tumor suppressor genes associated with GBM.
文摘AIMS To examine the prevalance of p53 mutations in hepatocellular carcinoma (HCC) from Chongqing area and the relationship between the p53 mutations and clinicopathological features of HCC,as well as the risk factors. METHODS The overexpression and point mutations of tumor suppressor gene p53 in 38 cases of HCC were detected by a sensitive antigen retrieval fluid (ARF) immunohistochemical method and polymerase chain re- action(PCR)-restriction fragment length polymorphism (RFLP),and single strand conformation polymorphism (SSCP)-silver staining analysis. RESULTS The results showed that 16 of 38 HCCs had positive p53 protein (42.1%),7 HCCs had p53 mutation at 249 (18.4 % ) and 2 HCCS had point muta- tion within exon 7 other than 249. Among 9 cases of HCC with mutations,8 cases demonstrated positive p53 protein,its coincidental rate was 88.9%. The overexpression and mutations of p53 were significantly related to the differentiation and metastasis of HCCs. The frequency of p53 mutations was consistent with high prevalence of HBV and a moderate aflatoxin B1 (AFB1) exposure in our area. CONCLUSIONS The results suggest that AFB1 acts synergistically with HBV in the generation of p53 mutations. Furthermore,dietary exposure to AFB1 may mainly contribute to the tumor specific mutation at codon 249,while HBV may account for other scattered mutations in HCC.
文摘Breast cancer is the leading cause for mortality among women worldwide.Dysregulation of oncogenes and tumor suppressor genes is the major reason for the cause of cancer.Understanding these genes will provide clues and insights about their regulatory mechanism and their interplay in cancer.In the present study,an attempt is made to compare the functional characteristics and interactions of oncogenes and tumor suppressor genes to understand their biological role.431 breast cancer samples from seven publicly available microarray datasets were collected and analysed using GEO2R tool.The identified 416 differentially expressed genes were classified into five gene sets as oncogenes(OG),tumor suppressor genes(TSG),druggable genes,essential genes and other genes.The gene sets were subjected to various analysis such as enrichment analysis(viz.,GO,Pathways,Diseases and Drugs),network analysis,calculation of mutation frequencies and Guanine-Cytosine(GC)content.From the results,it was observed that the OG were having high GC content as well as high interactions than TSG.Moreover,the OG are found to have frequent mutations than TSG.The enrichment analysis results suggest that the oncogenes are involved in positive regulation of cellular protein metabolic process,macromolecule biosynthetic process and majorly in cell cycle and focal adhesion pathway in cancer.It was also found that these oncogenes are involved in other diseases such as skin diseases and viral infections.Collagenase,paclitaxel and docetaxel are some of the drugs found to be enriched for oncogenes.
基金supported by the National Key Research and Development Program of China (Grant No. 2016YFC0905501)the National Natural Science Funds for Distinguished Young Scholar (Grant No. 81425025)+3 种基金the Key Project of the National Natural Science Foundation of China (Grant No. 81830093)the CAMS Innovation Fund for Medical Sciences (Grant No. CIFMS2019-I2M-1-003)the National Natural Science Foundation of China (Grant No. 81672765 and 81802796)。
文摘Objective: Oncogenes have been shown to be drivers of non-small cell lung cancer(NSCLC), yet the tumor suppressing genes involved in lung carcinogenesis remain to be systematically investigated. This study aimed to identify tumor suppressing ubiquitin pathway genes(UPGs) that were critical to lung tumorigenesis.Methods: The 696 UPGs were silenced by an siRNA screening in NSCLC cells;the potential tumor suppressing UPGs were analyzed, and their clinical significance was investigated.Results: We reported that silencing of 11 UPGs resulted in enhanced proliferation of NSCLC cells, and four UPGs(UBL3, TRIM22, UBE2 G2, and MARCH1) were significantly downregulated in tumor samples compared to that in normal lung tissues and their expression levels were positively associated with overall survival(OS) of NSCLC patients. Among these genes, UBL3 was the most significant one. UBL3 expression was decreased in tumor samples compared to that in paired normal lung tissues in 59/86(68.6%) NSCLCs, was correlated with TNM stage and sex of NSCLC patients, and was significantly higher in non-smoking patients than in smoking patients. Silencing UBL3 accelerated cell proliferation and ectopic expression of UBL3 suppressed NSCLC in vitro and in vivo.Conclusions: These results showed that UBL3 represented a tumor suppressor in NSCLC and may have potential for use in therapeutics and for the prediction of clinical outcome of patients.