期刊文献+
共找到220,856篇文章
< 1 2 250 >
每页显示 20 50 100
Exosomes in viral infection:Effects for pathogenesis and treatment strategies
1
作者 FATEMEH HEIDARI REIHANEH SEYEDEBRAHIMI +6 位作者 PIAO YANG MOHSEN ESLAMI FARSANI SHIMA ABABZADEH NASER KALHOR HAMED MANOOCHEHRI MOHSEN SHEYKHHASAN MARYAM AZIMZADEH 《BIOCELL》 SCIE 2023年第12期2597-2608,共12页
Exosomes are small vesicles that carry molecules from one cell to another.They have many features that make them interesting for research,such as their stability,low immunogenicity,size of the nanoscale,toxicity,and s... Exosomes are small vesicles that carry molecules from one cell to another.They have many features that make them interesting for research,such as their stability,low immunogenicity,size of the nanoscale,toxicity,and selective delivery.Exosomes can also interact with viruses in diverse ways.Emerging research highlights the significant role of exosomes in viral infections,particularly in the context of diseases like COVID-19,HIV,HBV and HCV.Understanding the intricate interplay between exosomes and the human immune system holds great promise for the development of effective antiviral therapies.An important aspect is gaining clarity on how exosomes influence the immune system and enhance viral infectivity through their inherent characteristics.By leveraging the innate properties of exosomes,viruses exploit the machinery involved in exosome biogenesis to set replication,facilitate the spread of infection,and eliminate immune responses.They can either help or hinder viral infection by modulating the immune system.This review summarizes the recent findings on how exosomes mediate viral infection and how they can be used for diagnosis or therapy.This could lead to new clinical applications of exosomes in disease management. 展开更多
关键词 EXOSOMES viral infection COVID-19 HIV HBV HCV
下载PDF
Diverse Regulations of Viral and Host Genes in Tomato Germplasms Responding to Tomato Yellow Leaf Curl Virus Inoculation
2
作者 Wanyu XIAO Jianghua HUANG +3 位作者 Xianyu ZHOU Hailong REN Jing ZHANG Donglin XU 《Agricultural Biotechnology》 CAS 2023年第3期55-57,124,共4页
Tomato yellow leaf curl virus(TYLCV)is the dominating pathogen of tomato yellow leaf curl disease that caused severe loss to tomato production in China.In this study,we found that a TYLCV-resistant tomato line drastic... Tomato yellow leaf curl virus(TYLCV)is the dominating pathogen of tomato yellow leaf curl disease that caused severe loss to tomato production in China.In this study,we found that a TYLCV-resistant tomato line drastically reduced the accumulation of viral complementary-sense strand mRNAs but just moderately inhibited that of viral DNA and virion-sense strand mRNAs.However,two other resistant lines did not have such virus inhibition pattern.Analysis of differential expressed genes showed that the potential host defense-relevant processes varied in different resistant tomatoes,as compared to the susceptible line,suggesting a diversity of tomato TYLCV-resistance mechanisms. 展开更多
关键词 Tomato yellow leaf curl virus Virus replication Gene expression
下载PDF
Molecular pathways in viral hepatitis-associated liver carcinogenesis: An update 被引量:2
3
作者 Gulsum Ozlem Elpek 《World Journal of Clinical Cases》 SCIE 2021年第19期4890-4917,共28页
Hepatocellular carcinoma(HCC)is the most common type of cancer among primary malignant tumors of the liver and is a consequential cause of cancerrelated deaths worldwide.In recent years,uncovering the molecular mechan... Hepatocellular carcinoma(HCC)is the most common type of cancer among primary malignant tumors of the liver and is a consequential cause of cancerrelated deaths worldwide.In recent years,uncovering the molecular mechanisms involved in the development and behavior of this tumor has led to the identification of multiple potential treatment targets.Despite the vast amount of data on this topic,HCC remains a challenging tumor to treat due to its aggressive behavior and complex molecular profile.Therefore,the number of studies aiming to elucidate the mechanisms involved in both carcinogenesis and tumor progression in HCC continues to increase.In this context,the close association of HCC with viral hepatitis has led to numerous studies focusing on the direct or indirect involvement of viruses in the mechanisms contributing to tumor development and behavior.In line with these efforts,this review was undertaken to highlight the current understanding of the molecular mechanisms by which hepatitis B virus(HBV)and hepatitis C virus(HCV)participate in oncogenesis and tumor progression in HCC and summarize new findings.Cumulative evidence indicates that HBV DNA integration promotes genomic instability,resulting in the overexpression of genes related to cancer development,metastasis,and angiogenesis or inactivation of tumor suppressor genes.In addition,genetic variations in HBV itself,especially preS2 deletions,may play a role in malignant transformation.Epigenetic dysregulation caused by both viruses might also contribute to tumor formation and metastasis by modifying the methylation of DNA and histones or altering the expression of microRNAs.Similarly,viral proteins of both HBV and HCV can affect pathways that are important anticancer targets.The effects of these two viruses on the Hippo-Yap-Taz pathway in HCC development and behavior need to be investigated.Additional,comprehensive studies are also needed to determine these viruses'interaction with integrins,farnesoid X,and the apelin system in malignant transformation and tumor progression.Although the relationship of persistent inflammation caused by HBV and HCV hepatitis with carcinogenesis is well defined,further studies are warranted to decipher the relationship among inflam masomes and viruses in carcinogenesis and elucidate the role of virus-microbiota interactions in HCC development and progression. 展开更多
关键词 Hepatitis B virus Hepatitis C virus Hepatocellular carcinoma CARCINOgenesIS Molecular pathways viral hepatitis
下载PDF
Cell Signaling in Viral and Oncogenic Pathogenesis and Its Implications in Disease Diagnosis and Prognosis
4
作者 LI Meng-feng 《中山大学学报(医学科学版)》 CAS CSCD 北大核心 2010年第2期141-153,共13页
Both viral diseases and cancer account for a large proportion of serious health problems. Viral infection and cancer are biologically and medically correlated and in many ways share common cellular pathways that lead ... Both viral diseases and cancer account for a large proportion of serious health problems. Viral infection and cancer are biologically and medically correlated and in many ways share common cellular pathways that lead to disease development or progression. Better understanding how these signaling events are specifically activated by different pathogenic stimuli and how they activate different downstream transcriptions in response to these stimuli at high specificity and efficiency will provide a new molecular basis for the development of novel disease biomarkers and therapeutic or preventive targets against both classes of diseases. Research in our laboratory has been prompted to investigate the regulation and modes of action of these pathways, with a more intensive focus on the NF-κB signaling, in the settings of severe or oncogenic viral infection as well as cancer development. It is hoped that our research will lead to eventual clinical application of biomarkers derived from these signaling pathways. 展开更多
关键词 viral infection NF-κB oncogenesis biomarkers therapeutic targets
下载PDF
Comprehensive analysis of the potential pathogenesis of COVID-19 infection and liver cancer
5
作者 Yao Rong Ming-Zheng Tang +2 位作者 Song-Hua Liu Xiao-Feng Li Hui Cai 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第2期436-457,共22页
BACKGROUND A growing number of clinical examples suggest that coronavirus disease 2019(COVID-19)appears to have an impact on the treatment of patients with liver cancer compared to the normal population,and the preval... BACKGROUND A growing number of clinical examples suggest that coronavirus disease 2019(COVID-19)appears to have an impact on the treatment of patients with liver cancer compared to the normal population,and the prevalence of COVID-19 is significantly higher in patients with liver cancer.However,this mechanism of action has not been clarified.Gene sets for COVID-19(GSE180226)and liver cancer(GSE87630)were obtained from the Gene Expression Omnibus database.After identifying the common differentially expressed genes(DEGs)of COVID-19 and liver cancer,functional enrichment analysis,protein-protein interaction network construction and scree-ning and analysis of hub genes were performed.Subsequently,the validation of the differential expression of hub genes in the disease was performed and the regulatory network of transcription factors and hub genes was constructed.RESULTS Of 518 common DEGs were obtained by screening for functional analysis.Fifteen hub genes including aurora kinase B,cyclin B2,cell division cycle 20,cell division cycle associated 8,nucleolar and spindle associated protein 1,etc.,were further identified from DEGs using the“cytoHubba”plugin.Functional enrichment analysis of hub genes showed that these hub genes are associated with P53 signalling pathway regulation,cell cycle and other functions,and they may serve as potential molecular markers for COVID-19 and liver cancer.Finally,we selected 10 of the hub genes for in vitro expression validation in liver cancer cells.CONCLUSION Our study reveals a common pathogenesis of liver cancer and COVID-19.These common pathways and key genes may provide new ideas for further mechanistic studies. 展开更多
关键词 COVID-19 Liver cancer Differentially expressed genes Hub genes PATHOgenesIS
下载PDF
Linker phosphorylation of Smad3 promotes fibro-carcinogenesis in chronic viral hepatitis of hepatocellular carcinoma 被引量:5
6
作者 Miki Murata Katsunori Yoshida +1 位作者 Takashi Yamaguchi Koichi Matsuzaki 《World Journal of Gastroenterology》 SCIE CAS 2014年第41期15018-15027,共10页
Epidemiological and clinical data point to a close association between chronic hepatitis B virus infection or chronic hepatitis C virus infection and development of hepatocellular carcinoma(HCC).HCC develops over seve... Epidemiological and clinical data point to a close association between chronic hepatitis B virus infection or chronic hepatitis C virus infection and development of hepatocellular carcinoma(HCC).HCC develops over several decades and is associated with fibrosis.This sequence suggests that persistent viral infection and chronic inflammation can synergistically induce liver fibrosis and hepatocarcinogenesis.The transforming growth factor-β(TGF-β) signaling pathway plays a pivotal role in diverse cellular processes and contributes to hepatic fibro-carcinogenesis under inflammatory microenvironments during chronic liver diseases.The biological activities of TGF-β are initiated by the binding of the ligand to TGF-β receptors,which phosphorylate Smad proteins.TGF-β typeⅠreceptor activates Smad3 to create COOH-terminally phosphorylated Smad3(pSmad3C),while pro-inflammatory cytokine-activated kinases phosphorylates Smad3 to create the linker phosphorylated Smad3(pSmad3L).During chronic liver disease progression,virus components,together with pro-inflammatory cytokines and somatic mutations,convert the Smad3 signal from tumor-suppressive pS-mad3C to fibro-carcinogenic pSmad3 L pathways,accelerating liver fibrosis and increasing the risk of HCC.The understanding of Smad3 phosphorylation profiles may provide new opportunities for effective chemoprevention and personalized therapy for patients with hepatitis virus-related HCC in the future. 展开更多
关键词 Chronic viral hepatitis TRANSFORMING growth factor
下载PDF
Expression of hepatitis B virus genes in early embryonic cells originated from hamster ova and human spermatozoa transfected with the complete viral genome 被引量:62
7
作者 Bahy Ahmed Ali Tian-Hua Huang +1 位作者 Halima-Hassan Salem Qing-Dong Xie 《Asian Journal of Andrology》 SCIE CAS CSCD 2006年第3期273-279,共7页
Aim: To detect the expression of hepatitis B virus (HBV) genes (HB S and C genes) in early embryonic cells after introducing motile human sperm carrying HBV DNA into zona-free hamster oocytes via the in vitro fer... Aim: To detect the expression of hepatitis B virus (HBV) genes (HB S and C genes) in early embryonic cells after introducing motile human sperm carrying HBV DNA into zona-free hamster oocytes via the in vitro fertilization (IVF) technique. Methods: Human sperm-mediated HBV genes were delivered into zona-free hamster oocytes by the IVF method. Polymerase chain reaction (PCR) was used to detect HB S and pre-Core/Core (pre-C/C) coding genes both in one- and two-cell embryos. Reverse transcription-PCR (RT-PCR) analysis was used to study the expression of the two genes. Fluorescence in situ hybridization (FISH) analysis using the full-length HBV DNA as the hybridization probe was performed to confirm the integration of viral DNA in the host embryonic genome. Results: Both HB S and pre-C/C coding genes are present and transcribed in one- and two-cell embryos originated from hamster ova IVF with human spermatozoa carrying HBV DNA sequences. Conclusion: Sperm-mediated HBV genes are able to replicate and express themselves in early embryonic cells. These results provide direct evidence that HBV DNA could transmit vertically to the next generation via the male germ line. 展开更多
关键词 hepatitis B virus gene expression hamster ovary human spermatozoa in vitro fertilization
下载PDF
Risk Assessment of Synergism and Recombination on the Transgenic Plants Containing Viral Movement Protein and Replicase Genes 被引量:4
8
作者 NIUYan-bing LIGui-xin 《Agricultural Sciences in China》 CAS CSCD 2003年第2期170-175,共6页
The transgenic tobacco plants transformed with movement protein gene of Tomato mosaic virus (ToMV) or Tobacco mosaic virus (TMV) and partial replicase gene of Cucumber mosaic virus (CMV) P1 isolate (CMV-P1), were inoc... The transgenic tobacco plants transformed with movement protein gene of Tomato mosaic virus (ToMV) or Tobacco mosaic virus (TMV) and partial replicase gene of Cucumber mosaic virus (CMV) P1 isolate (CMV-P1), were inoculated with Potato virus X, Potato virus Y, TMV and CMV isolate RB (CMV-RB), respectively. Symptom observation showed there were no symptom differences in transgenic tobacco plants as compared with those in non-transgenie tobacco plants. ELISA also illustrated that the virus concentrations in the transgenic plants were similar to those in non-transgenic plants, indicating that no synergism is found in these plants. The transgenic tobacco plants expressing movement protein gene of ToMV or partial replicase gene of CMV-P1 were inoculated with TMV and CMV-RB, respectively. The local or systemic infected leaves were then used for elucidation of the possible virus recombination in transgenic plants with biological infectivity test, ELISA and immuno-capture RT-PCR. Within 16 months, no recombination was found between transformed genes and inoculated virus genomes. The research provides fundamental data for understanding of the possible risk of the transgenic plants expressing viral sequences. 展开更多
关键词 Transgenic plant viral sequences Synergism Recombination
下载PDF
New animal models for hepatitis C viral infection and pathogenesis studies 被引量:9
9
作者 Dina Kremsdorf Nicolas Brezillon 《World Journal of Gastroenterology》 SCIE CAS CSCD 2007年第17期2427-2435,共9页
Hepatitis C virus (HCV) is a major cause of chronic live disease, cirrhosis and hepatocellular carcinoma (HCC) In man, the pathobiological changes associated wit HCV infection have been attributed to both the immun sy... Hepatitis C virus (HCV) is a major cause of chronic live disease, cirrhosis and hepatocellular carcinoma (HCC) In man, the pathobiological changes associated wit HCV infection have been attributed to both the immun system and direct viral cytopathic effects. Until now, th lack of simple culture systems to infect and propagat the virus has hampered progress in understandin the viral life cycle and pathogenesis of HCV infection including the molecular mechanisms implicated in HCV induced HCC. This clearly demonstrates the need t develop small animal models for the study of HCV associated pathogenesis. This review describes an discusses the development of new HCV animal models t study viral infection and investigate the direct effects o viral protein expression on liver disease. 展开更多
关键词 丙型肝炎病毒感染 动物模型 发病机理 研究进展
下载PDF
Roles of HIV-1 auxiliary proteins in viral pathogenesis and host-pathogen interactions 被引量:5
10
作者 Lin LI Hai Shan LI +2 位作者 C. David PAUZA Michael BUKRINSKY Richard Y ZHAO 《Cell Research》 SCIE CAS CSCD 2005年第11期923-934,共12页
Active host-pathogen interactions take place during infection of human immunodeficiency virus type 1 (HIV-1). Outcomes of these interactions determine the efficiency of viral infection and subsequent disease progressi... Active host-pathogen interactions take place during infection of human immunodeficiency virus type 1 (HIV-1). Outcomes of these interactions determine the efficiency of viral infection and subsequent disease progression. HIV- infected cells respond to viral invasion with various defensive strategies such as innate, cellular and humoral immune antiviral mechanisms. On the other hand, the virus has also developed various offensive tactics to suppress these host cellular responses. Among many of the viral offensive strategies, HIV-1 viral auxiliary proteins (Tat, Rev, Nef, Vif, Vpr and Vpu) play important roles in the host-pathogen interaction and thus have significant impacts on the outcome of HIV infection. One of the best examples is the interaction of Vif with a host cytidine deaminase APOBEC3G. Although specific roles of other auxiliary proteins are not as well described as Vif-APOBEC3G interaction, it is the goal of this brief review to summarize some of the preliminary findings with the hope to stimulate further discussion and investiga- tion in this exhilarating area of research. 展开更多
关键词 爱滋病病毒-1 辅助蛋白 病毒感染 中国 病原体
下载PDF
Identification of hub genes associated with Helicobacter pylori infection and type 2 diabetes mellitus:A pilot bioinformatics study
11
作者 Han Chen Guo-Xin Zhang Xiao-Ying Zhou 《World Journal of Diabetes》 SCIE 2024年第2期170-185,共16页
BACKGROUND Helicobacter pylori(H.pylori)infection is related to various extragastric diseases including type 2 diabetes mellitus(T2DM).However,the possible mechanisms connecting H.pylori infection and T2DM remain unkn... BACKGROUND Helicobacter pylori(H.pylori)infection is related to various extragastric diseases including type 2 diabetes mellitus(T2DM).However,the possible mechanisms connecting H.pylori infection and T2DM remain unknown.AIM To explore potential molecular connections between H.pylori infection and T2DM.METHODS We extracted gene expression arrays from three online datasets(GSE60427,GSE27411 and GSE115601).Differentially expressed genes(DEGs)commonly present in patients with H.pylori infection and T2DM were identified.Hub genes were validated using human gastric biopsy samples.Correlations between hub genes and immune cell infiltration,miRNAs,and transcription factors(TFs)were further analyzed.RESULTS A total of 67 DEGs were commonly presented in patients with H.pylori infection and T2DM.Five significantly upregulated hub genes,including TLR4,ITGAM,C5AR1,FCER1G,and FCGR2A,were finally identified,all of which are closely related to immune cell infiltration.The gene-miRNA analysis detected 13 miRNAs with at least two gene cross-links.TF-gene interaction networks showed that TLR4 was coregulated by 26 TFs,the largest number of TFs among the 5 hub genes.CONCLUSION We identified five hub genes that may have molecular connections between H.pylori infection and T2DM.This study provides new insights into the pathogenesis of H.pylori-induced onset of T2DM. 展开更多
关键词 Helicobacter pylori Type 2 diabetes mellitus Bioinformatics analysis Differentially expressed genes Hub genes
下载PDF
Identification and Validation of Vascular-Associated Biomarkers for the Prognosis and Potential Pathogenesis of Hypertension Using Comprehensive Bioinformatics Methods
12
作者 Xiangguang Chang Lei Guo +2 位作者 Liying Zou Yazhao Ma Jilin Feng 《World Journal of Cardiovascular Diseases》 CAS 2024年第3期115-128,共14页
Background: Hypertension, also known as increased blood pressure, is a phenomenon in which blood flows in blood vessels and causes persistently higher-than-normal pressure on the vessel wall. The identification of nov... Background: Hypertension, also known as increased blood pressure, is a phenomenon in which blood flows in blood vessels and causes persistently higher-than-normal pressure on the vessel wall. The identification of novel prognostic and pathogenesis biomarkers plays a key role in the management of hypertension. Methods: The GSE7483 and GSE75815 datasets from the gene expression omnibus (GEO) database were used to identify the genes associated with hypertension that were differentially expressed genes (DEGs). The functional role of the DEGs was elucidated by gene body (GO) enrichment analysis. In addition, we performed an immune infiltration assay and GSEA on the DEGs of hypertensive patients and verified the expression of novel DEGs in the blood of hypertensive patients by RT-qPCR. Results: A total of 267 DEGs were identified from the GEO database. GO analysis revealed that these genes were associated mainly with biological processes such as fibroblast proliferation, cell structural organization, extracellular matrix organization, vasculature development regulation, and angiogenesis. We identified five possible biomarkers, Ecm1, Sparc, Sphk1, Thbsl, and Mecp2, which correlate with vascular development and angiogenesis characteristic of hypertension by bioinformatics, and explored the clinical expression levels of these genes by RT-qPCR, and found that Sparc, Sphk1, and Thbs1 showed significant up-regulation, in agreement with the results of the bioinformatics analysis. Conclusion: Our study suggested that Sparc, Sphk1 and Thbs1 may be potential novel biomarkers for the diagnosis, treatment and prognosis of hypertension and that they are involved in the regulation of vascular development and angiogenesis in hypertension. 展开更多
关键词 HYPERTENSION Biomarkers Differentially Expressed genes Vascular Development and Angiogenesis Bioinformatics Analysis
下载PDF
Fate and Behavior of Tetracycline Resistance Genes in Activated Carbon Adsorption
13
作者 Sri Anggreini Alma Rizky Aurellya +1 位作者 Wenqing Li Fusheng Li 《Journal of Water Resource and Protection》 CAS 2024年第1期1-16,共16页
The accessibility of tetracycline resistance gene (tetG) into the pores of activated carbon (AC), as well as the impact of the pore size distribution (PSD) of AC on the uptake capacity of tetG, were investigated using... The accessibility of tetracycline resistance gene (tetG) into the pores of activated carbon (AC), as well as the impact of the pore size distribution (PSD) of AC on the uptake capacity of tetG, were investigated using eight types of AC (four coal-based and four wood-based). AC showed the capability to admit tetG and the average reduction of tetG for coal-based and wood-based ACs at the AC dose of 1 g·L<sup>-1</sup> was 3.12 log and 3.65 log, respectively. The uptake kinetic analysis showed that the uptake of the gene followed the pseudo-second-order kinetics reaction, and the uptake rate constant for the coal-based and wood-based ACs was in the range of 5.97 × 10<sup>-12</sup> - 4.64 × 10<sup>-9</sup> and 7.02 × 10<sup>-11</sup> - 1.59 × 10<sup>-8</sup> copies·mg<sup>-1</sup>·min<sup>-1</sup>, respectively. The uptake capacity analysis by fitting the obtained experiment data with the Freundlich isotherm model indicated that the uptake constant (K<sub>F</sub>) values were 1.71 × 10<sup>3</sup> - 8.00 × 10<sup>9</sup> (copies·g<sup>-1</sup>)<sup>1-1/n</sup> for coal-based ACs and 7.00 × 10<sup>8</sup> - 3.00 × 10<sup>10</sup> (copies·g<sup>-1</sup>)<sup>1-1/n</sup> for wood-based ones. In addition, the correlation analysis between K<sub>F</sub> values and pore volume as well as pore surface at different pore size regions of ACs showed that relatively higher positive correlation was found for pores of 50 - 100 Å, suggesting ACs with more pores in this size region can uptake more tetG. The findings of this study are valuable as reference for optimizing the adsorption process regarding antibiotic resistance-related concerns in drinking water treatment. 展开更多
关键词 Antibiotic Resistance genes ADSORPTION Activated Carbon Drinking Water Treatment
下载PDF
The Application of Nicotiana benthamiana as a Transient Expression Host to Clone the Coding Sequences of Plant Genes
14
作者 Jianzhong Huang Peng Jia +3 位作者 Xiaoju Zhong Xiuying Guan Hongbin Zhang Honglei Ruan 《American Journal of Molecular Biology》 CAS 2024年第2期54-65,共12页
Coding sequences (CDS) are commonly used for transient gene expression, in yeast two-hybrid screening, to verify protein interactions and in prokaryotic gene expression studies. CDS are most commonly obtained using co... Coding sequences (CDS) are commonly used for transient gene expression, in yeast two-hybrid screening, to verify protein interactions and in prokaryotic gene expression studies. CDS are most commonly obtained using complementary DNA (cDNA) derived from messenger RNA (mRNA) extracted from plant tissues and generated by reverse transcription. However, some CDS are difficult to acquire through this process as they are expressed at extremely low levels or have specific spatial and/or temporal expression patterns in vivo. These challenges require the development of alternative CDS cloning technologies. In this study, we found that the genomic intron-containing gene coding sequences (gDNA) from Arabidopsis thaliana, Oryza sativa, Brassica napus, and Glycine max can be correctly transcribed and spliced into mRNA in Nicotiana benthamiana. In contrast, gDNAs from Triticum aestivum and Sorghum bicolor did not function correctly. In transient expression experiments, the target DNA sequence is driven by a constitutive promoter. Theoretically, a sufficient amount of mRNA can be extracted from the N. benthamiana leaves, making it conducive to the cloning of CDS target genes. Our data demonstrate that N. benthamiana can be used as an effective host for the cloning CDS of plant genes. 展开更多
关键词 Coding Sequence Genomic Sequence Nicotiana benthamiana Plant genes
下载PDF
J-family genes redundantly regulate flowering time and increase yield in soybean
15
作者 Haiyang Li Zheng Chen +10 位作者 Fan Wang Hongli Xiang Shuangrong Liu Chuanjie Gou Chao Fang Liyu Chen Tiantian Bu Fanjiang Kong Xiaohui Zhao Baohui Liu Xiaoya Lin 《The Crop Journal》 SCIE CSCD 2024年第3期944-949,共6页
Soybean(Glycine max)is a short-day crop whose flowering time is regulated by photoperiod.The longjuvenile trait extends its vegetative phase and increases yield under short-day conditions.Natural variation in J,the ma... Soybean(Glycine max)is a short-day crop whose flowering time is regulated by photoperiod.The longjuvenile trait extends its vegetative phase and increases yield under short-day conditions.Natural variation in J,the major locus controlling this trait,modulates flowering time.We report that the three J-family genes influence soybean flowering time,with the triple mutant Guangzhou Mammoth-2 flowering late under short days by inhibiting transcription of E1-family genes.J-family genes offer promising allelic combinations for breeding. 展开更多
关键词 SOYBEAN Flowering time YIELD J-family genes
下载PDF
Dissemination of Resistance Integrons and Genes Coding for Blse and Cabapenemases in the Urban Drainage Network in Cote d’Ivoire
16
作者 Coulibaly Kalpy Julien Diaby Aboubakar Sidik +8 位作者 Vakou N’dri Sabine M’bengue Gbonon Valérie Carole Claon Jean Stephane Yao Kouamé Eric Gnali Gbohounou Fabrice Yéo Yéfougnini Bagré Issa Djaman Allico Joseph Dosso Mireille 《Advances in Microbiology》 CAS 2024年第5期268-286,共19页
Antibiotic resistance has become a major threat to human health worldwide. Environment, particularly the water environment, has long been overlooked as a player in the antibiotic resistance cycle, although its role re... Antibiotic resistance has become a major threat to human health worldwide. Environment, particularly the water environment, has long been overlooked as a player in the antibiotic resistance cycle, although its role remains unclear. These can provide an ideal setting for the acquisition and dissemination of antibiotic resistance, as they are frequently affected by anthropogenic activities. The objective of this study was to establish a diffusion map of resistance integrons used as genetic markers of resistance associated with antibiotic resistance conferring genes (ARGs). Total DNA extracts from non-cultivable bacterial communities were used for the analyses. These communities were obtained from wastewater samples from 14 sites upstream and downstream of drainage channels or effluents in the cities of Abidjan, Bouaké, and Yamoussoukro. The results obtained correspond to the number of positives among the treated samples (n = 39). Among the genetic markers of dissemination, class 1 integrons were the most evident in 94.8% of samples in Abidjan (93.3%), Bouaké (100%) and Yamoussoukro (91.6%). Class 2 integrons and class 3 integrons were found respectively in 41% and 51% of all samples. Genes coding for β-lactamases and blaTEM was identified in almost all samples at a rate of 97.4%. A co-presence of the three genes blaTEM, blaSHV and blaCTX-M is also remarkable in the sites of the city of Yamoussoukro. Among the genes coding for carbapenemases, only blaKPC 17.94%, blaNDM 30.76% and blaOXA48 38.46% were detected in the samples. 展开更多
关键词 Antibiotic Resistance WASTEWATER Resistance Integrons (RIs) Resistance genes
下载PDF
Direct somatic embryogenesis and related gene expression networks in leaf explants of Hippeastrum ‘Bangkok Rose’
17
作者 Jingjue Zeng Yi Deng +8 位作者 Shahid Iqbal Jiarui Zhang Kunlin Wu Guohua Ma Lin Li Guangyi Dai Rufang Deng Lin Fang Songjun Zeng 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第2期556-572,共17页
Hippeastrum, a highly diverse genus in the Amaryllidaceae family, is a valuable ornamental bulbous flowering plant. Somatic embryogenesis(SE) is an efficient method for mass production of Hippeastrum plantlets. Previo... Hippeastrum, a highly diverse genus in the Amaryllidaceae family, is a valuable ornamental bulbous flowering plant. Somatic embryogenesis(SE) is an efficient method for mass production of Hippeastrum plantlets. Previous studies have been devoted to the in vitro propagation of Hippeastrum, but the SE and its regulatory networks are rarely reported. In this study, we established a direct SE method of Hippeastrum Bangkok Rose' using leaf bases as explants. MS supplemented with 1.00 mg·L^(-1)NAA +1.00 mg·L^(-1)KT + 0.25 mg·L^(-1)TDZ was the optimal medium for SE. Histological observations showed that the bipolar somatic embryo originated from the epidermal cell layer and underwent initiation,globular, scutellar and coleoptile stages. During SE, endogenous hormones of IAA, CTK, ABA, and SA were highly accumulated. Transcriptomic analysis revealed the genes encoding auxin biosynthesis/metabolic enzymes and efflux carriers were induced, while the auxin receptor of TIR1 and ARF transcriptional repressor of Aux/IAA were down-regulated and up-regulated, respectively, leading to suppression of auxin signaling. In contrast, cytokine signaling was promoted at the early stage of SE, as biosynthesis, transport, and signaling components were up-regulated.Various stress-related genes were up-regulated at the early or late stages of SE. Chromatin remodeling could also be dynamically regulated via distinct expression enzymes that control histone methylation and acetylation during SE. Moreover, key SE regulators, including WOXs and SERKs were highly expressed along with SE. Overall, the present study provides insights into the SE regulatory mechanisms of the Hippeastrum. 展开更多
关键词 Hippeastrum Tissue culture Somatic embryogenesis Gene regulation
下载PDF
Core and variable antimicrobial resistance genes in the gut microbiomes of Chinese and European pigs
18
作者 Cui-Hong Tong Zhi-Peng Huo +4 位作者 Lu Diao Dan-Yu Xiao Ruo-Nan Zhao Zhen-Ling Zeng Wen-Guang Xiong 《Zoological Research》 SCIE CSCD 2024年第1期189-200,共12页
Monitoring the prevalence of antimicrobial resistance genes(ARGs)is vital for addressing the global crisis of antibiotic-resistant bacterial infections.Despite its importance,the characterization of ARGs and microbiom... Monitoring the prevalence of antimicrobial resistance genes(ARGs)is vital for addressing the global crisis of antibiotic-resistant bacterial infections.Despite its importance,the characterization of ARGs and microbiome structures,as well as the identification of indicators for routine ARG monitoring in pig farms,are still lacking,particularly concerning variations in antimicrobial exposure in different countries or regions.Here,metagenomics and random forest machine learning were used to elucidate the ARG profiles,microbiome structures,and ARG contamination indicators in pig manure under different antimicrobial pressures between China and Europe.Results showed that Chinese pigs exposed to high-level antimicrobials exhibited higher total and plasmid-mediated ARG abundances compared to those in European pigs(P<0.05).ANT(6)-Ib,APH(3')-IIIa,and tet(40)were identified as shared core ARGs between the two pig populations.Furthermore,the core ARGs identified in pig populations were correlated with those found in human populations within the same geographical regions.Lactobacillus and Prevotella were identified as the dominant genera in the core microbiomes of Chinese and European pigs,respectively.Forty ARG markers and 43 biomarkers were able to differentiate between the Chinese and European pig manure samples with accuracies of 100%and 98.7%,respectively.Indicators for assessing ARG contamination in Chinese and European pigs also achieved high accuracy(r=0.72-0.88).Escherichia flexneri in both Chinese and European pig populations carried between 21 and 37 ARGs.The results of this study emphasize the importance of global collaboration in reducing antimicrobial resistance risk and provide validated indicators for evaluating the risk of ARG contamination in pig farms. 展开更多
关键词 METAGENOMIC Pig manure Antimicrobial pressure Antimicrobial resistance genes MICROBIOME
下载PDF
Transcriptome analysis reveals immune-related genes in tissues of Vibrio anguillarum-infected turbot Scophthalmus maximus
19
作者 Yuting SONG Maqsood Ahmed SOOMRO +1 位作者 Xianzhi DONG Guobin HU 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第1期332-344,共13页
Turbot Scophthalmus maximus is an important mariculture fish species with high economic value.However,the bacterial diseases caused by Vibrio anguillarum infection bring huge economic losses to the turbot aquaculture ... Turbot Scophthalmus maximus is an important mariculture fish species with high economic value.However,the bacterial diseases caused by Vibrio anguillarum infection bring huge economic losses to the turbot aquaculture industry.To understand the immune response of the turbot against V.anguillarum infection and to explore novel immune-related genes,the transcriptome analysis of turbot spleen and gills were conducted after V.anguillarum infection.Differentially expressed genes(DEGs)were identified in spleen and gill of the turbot amounted to 17261 and 16436,respectively.A large number of immunerelated DEGs were enriched in cytokine-cytokine receptor interaction signaling pathway,and the others by the kyoto encyclopedia of genes and genomes(KEGG)enrichment.The gene ontology(GO)classification analysis revealed that V.anguillarum infection had the greatest effect on biological processes and cellular components.Twelve immune-related DEGs were identified in the spleen(cstl.1,egfl6,lamb21,v2rx4,calcr,and gpr78a)and gills(ghra,sh3gl2a,cst12,inhbaa,cxcl8,and il-1b)by heat map.The proteinprotein interaction(PPI)networks were constructed to analyze the immune mechanism.The results demonstrate that the maturation and antigen processing of major histocompatibility complex(MHC)class II molecule,and calcitonin-or adrenomedullin-regulated physiological activity were important events in the immunity of turbot against V.anguillarum infection.In the gills,the protein interactions in TGF-βsignaling pathway,production of inflammatory factors,and endocytosis regulation were most significant.Our research laid a foundation for discovering novel immune-related genes and enriching the knowledge of immune mechanisms of turbot against V.anguillarum infection. 展开更多
关键词 Scophthalmus maximus Vibrio anguillarum TRANSCRIPTOME differentially expressed genes immune mechanism
下载PDF
Identification of Prognosis-Related Genes and Key Target Genes for Pancreatic Cancer: A Bioinformatics Analysis
20
作者 Zhonghua Shang Nicaise Patient Woulaidjei Ntomo +1 位作者 Achi Ntiak Ernestina Apeku 《Journal of Biosciences and Medicines》 2024年第6期159-177,共19页
Objective: The mortality and morbidity rates associated with pancreatic cancer (PaCa) are extremely high. Various studies have demonstrated that pancreatic cancer will be the fourth cancer-related death by 2030, raisi... Objective: The mortality and morbidity rates associated with pancreatic cancer (PaCa) are extremely high. Various studies have demonstrated that pancreatic cancer will be the fourth cancer-related death by 2030, raising more concern for scholars to find effective methods to prevent and treat in order to improve the pancreatic cancer outcome. Using bioinformatic analysis, this study aims to pinpoint key genes that could impact PaCa patients’ prognosis and could be used as therapeutic targets. Methods: The TCGA and GEO datasets were integratively analyzed to identify prognosis-related differentially expressed genes. Next, the STRING database was used to develop PPI networks, and the MCODE and CytoNCA Cytoscape in Cytoscape were used to screen for critical genes. Through CytoNCA, three kinds of topology analysis were considered (degree, betweenness, and eigenvector). Essential genes were confirmed as potential target treatment through Go function and pathways enrichment analysis, a developed predictive risk model based on multivariate analysis, and the establishment of nomograms using the clinical information. Results: Overall, the GSE183795 and TCGA datasets associated 1311 and 2244 genes with pancreatic cancer prognosis, respectively. We identified 132 genes that were present in both datasets. The PPI network analysis using, the centrality analysis approach with the CytoNCA plug-in, showed that CDK2, PLK1, CCNB1, and TOP2A ranked in the top 5% across all three metrics. The independent analysis of a risk model revealed that the four key genes had a Hazard Ratio (HR) > 1. The monogram showed the predictive risk model and individual patient survival predictions were accurate. The results indicate that the effect of the selected vital genes was significant and that they could be used as biomarkers to predict a patient’s outcome and as possible target therapy in patients with pancreatic cancer. GO function and pathway analysis demonstrated that crucial genes might affect the P53 signaling pathway and FoxO signaling pathway, through which Meiotic nuclear division and cell cycle may have a significant function in essential genes affecting the outcome of patients who have pancreatic cancer. Conclusions: This study suggests that CDK2, CCNB1, PLK1 and TOP2A are four key genes that have a significant influence on PaCa migration and proliferation. CDK2, CCNB1, PLK1, and TOP2A can be used as potential PaCa prognostic biomarkers and therapeutic targets. However, experimental validation is necessary to confirm these predictions. Our study comes into contributions to the development of personalized target therapy for pancreatic cancer patients. 展开更多
关键词 Pancreatic Cancer Target genes Protein-Protein Network BIOINFORMATICS
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部