[Objective] The aim was to study the genetic diversities between Xiaogan water chestnut and wild chestnut with randomly amplified polymorphic DNA (RAPD) technology. [Method] Genetic diversities of the local cultivat...[Objective] The aim was to study the genetic diversities between Xiaogan water chestnut and wild chestnut with randomly amplified polymorphic DNA (RAPD) technology. [Method] Genetic diversities of the local cultivated water chestnut,wild chestnut,Lepironia articulata and Scirpus planiculmis Fr. Schmidt were analyzed by RAPD technology. [Result] Among the screened random primers 841,842,807 and 840,the polymorphism of amplification product of 841 was evident,and the obtained bands in electrophoresis were clear and showed good repeatability. Cluster analysis result showed that the affinity of cultivated water chestnut and wild water chestnut was nearer than that between Lepironia articulata and Scirpus planiculmis. [Conclusion] The research provides theoretical basis for cultivating high-quality new varieties of water chestnut.展开更多
The common walnut(Juglans regia)is one of the most economically important nut trees cultivated worldwide.Despite its importance,no comprehensive evaluation of walnut tree population genetics has been undertaken across...The common walnut(Juglans regia)is one of the most economically important nut trees cultivated worldwide.Despite its importance,no comprehensive evaluation of walnut tree population genetics has been undertaken across the range where it originated,Central Asia.In this study,we investigated the genetic diversity and population structure of 1082 individuals from 46 populations across Central Asia.We found moderate genetic diversity of J.regia across Central Asia,with 46 populations clustered into three groups with a weak relationship between genetic and geographic distance.Our findings reveal that the western Himalaya might be the core region of common walnut genetic diversity in Central Asia and that,except for two populations in Gongliu Wild Walnut Valley,humans might have introduced walnut populations to Xinjiang,China.The observed distribution of the genetic landscape has probably been affected by historical climate fluctuation,breeding system,and prolonged anthropogenic activity.We propose the conservation of the core genetic diversity resources in the western Himalaya and pay special attention to populations from Gongliu in Xinjiang.These findings enhance our understanding of the genetic variation throughout the distribution range of J.regia in Central Asia,which will provide a key prerequisite for evidence-based conservation and management.展开更多
Objective This study aimed to understand the epidemic status and phylogenetic relationships of rotavirus group A(RVA)in the Pearl River Delta region of Guangdong Province,China.Methods This study included individuals ...Objective This study aimed to understand the epidemic status and phylogenetic relationships of rotavirus group A(RVA)in the Pearl River Delta region of Guangdong Province,China.Methods This study included individuals aged 28 days–85 years.A total of 706 stool samples from patients with acute gastroenteritis collected between January 2019 and January 2020 were analyzed for 17 causative pathogens,including RVA,using a Gastrointestinal Pathogen Panel,followed by genotyping,virus isolation,and complete sequencing to assess the genetic diversity of RVA.Results The overall RVA infection rate was 14.59%(103/706),with an irregular epidemiological pattern.The proportion of co-infection with RVA and other pathogens was 39.81%(41/103).Acute gastroenteritis is highly prevalent in young children aged 0–1 year,and RVA is the key pathogen circulating in patients 6–10 months of age with diarrhea.G9P[8](58.25%,60/103)was found to be the predominant genotype in the RVA strains,and the 41 RVA-positive strains that were successfully sequenced belonged to three different RVA genotypes in the phylogenetic analysis.Recombination analysis showed that gene reassortment events,selection pressure,codon usage bias,gene polymorphism,and post-translational modifications(PTMs)occurred in the G9P[8]and G3P[8]strains.Conclusion This study provides molecular evidence of RVA prevalence in the Pearl River Delta region of China,further enriching the existing information on its genetics and evolutionary characteristics and suggesting the emergence of genetic diversity.Strengthening the surveillance of genotypic changes and gene reassortment in RVA strains is essential for further research and a better understanding of strain variations for further vaccine development.展开更多
Ulva prolifera is the causative species of the annually occurring large-scale green tides in China since 2007.Its specific biological features on reproductivity strategies,as well as intra-species genetic diversity,ar...Ulva prolifera is the causative species of the annually occurring large-scale green tides in China since 2007.Its specific biological features on reproductivity strategies,as well as intra-species genetic diversity,are still largely unknown,especially at the genome level,despite their importance in understanding the formation and outbreak of massive green tides.In the present study,the restriction site-associated DNA genotyping approach(2b-RAD)was adopted to identify the genome-wide single-nucleotide polymorphisms(SNPs)of 54 individual thalli including samples collected from Subei Shoal in 2019 and Qingdao coast from 2019 to 2021.SNPs genotype results revealed that most of the thalli in 2019 and 2020 were haploid gametophytes,while only half of the thalli were gametophytes in 2021,indicating flexibility in the reproductive strategies for the formation of the green tides among different years and the dominance of asexual and vegetative reproductive mode for the floating period.Besides,population analysis was conducted,and it revealed a very low genetic diversity among samples from Subei Shoal and the Qingdao coast in the same year and a higher divergence among samples in different years.The results showed the efficiency of 2b-RAD in the exploration of SNPs in U.prolifera and provided the first genome-wide scale evidence for the origin of the large-scale green tides on the Qingdao coast.This study improved our understanding of the reproductive strategy and genetic diversity of the green tide causative species and will help further reveal the biological causes of the green tide in China.展开更多
Macrophyte habitats exhibit remarkable heterogeneity,encompassing the spatial variation of abiotic and biotic components such as changes in water conditions and weather as well as anthropogenic stressors.Environmental...Macrophyte habitats exhibit remarkable heterogeneity,encompassing the spatial variation of abiotic and biotic components such as changes in water conditions and weather as well as anthropogenic stressors.Environmental factors are thought to be important drivers shaping the genetic and epigenetic variation of aquatic plants.However,the links among genetic diversity,epigenetic variation,and environmental variables remain largely unclear,especially for clonal aquatic plants.Here,we performed population genetic and epigenetic analyses in conjunction with habitat discrimination to elucidate the environmental factors driving intraspecies genetic and epigenetic variation in hornwort(Ceratophyllum demersum)in a subtropical lake.Environmental factors were highly correlated with the genetic and epigenetic variation of C.demersum,with temperature being a key driver of the genetic variation.Lower temperature was detected to be correlated with greater genetic and epigenetic variation.Genetic and epigenetic variation were positively driven by water temperature,but were negatively affected by ambient air temperature.These findings indicate that the genetic and epigenetic variation of this clonal aquatic herb is not related to the geographic feature but is instead driven by environmental conditions,and demonstrate the effects of temperature on local genetic and epigenetic variation in aquatic systems.展开更多
Chinese Assam tea(Camellia sinensis var.assamica)is an important tea crop with a long history of cultivation in Yunnan,China.Despite its potential value as a genetic resource,its genetic diversity and domestication/br...Chinese Assam tea(Camellia sinensis var.assamica)is an important tea crop with a long history of cultivation in Yunnan,China.Despite its potential value as a genetic resource,its genetic diversity and domestication/breeding history remain unclear.To address this issue,we genotyped 469 ancient tea plant trees representing 26 C.sinensis var.assamica populations,plus two of its wild relatives(six and three populations of C.taliensis and C.crassicolumna,respectively)using 16 nuclear microsatellite loci.Results showed that Chinese Assam tea has a relatively high,but comparatively lower gene diversity(H_(S)=0.638)than the wild relative C.crassicolumna(H_S=0.658).Clustering in STRUCTURE indicated that Chinese Assam tea and its two wild relatives formed distinct genetic groups,with considerable interspecific introgression.The Chinese Assam tea accessions clustered into three gene pools,corresponding well with their geographic distribution.However,New Hybrids analysis indicated that 68.48%of ancient Chinese Assam tea plants from Xishuangbanna were genetic intermediates between the Puer and Lincang gene pools.In addition,10%of the ancient Chinese Assam tea individuals were found to be hybrids between Chinese Assam tea and C.taliensis.Our results suggest that Chinese Assam tea was domesticated separately in three gene pools(Puer,Lincang and Xishuangbanna)in the Mekong River valley and that the hybrids were subsequently selected during the domestication process.Although the domestication history of Chinese Assam tea in southwestern Yunnan remains complex,our results will help to identify valuable genetic resources that may be useful in future tea breeding programs.展开更多
Objective:To determine the genetic diversity of Plasmodium(P.)knowlesi isolates from Sabah,Malaysian Borneo and Peninsular Malaysia,targeting the S-type SSU rRNA gene and including aspects of natural selection and hap...Objective:To determine the genetic diversity of Plasmodium(P.)knowlesi isolates from Sabah,Malaysian Borneo and Peninsular Malaysia,targeting the S-type SSU rRNA gene and including aspects of natural selection and haplotype.Methods:Thirty-nine blood samples infected with P.knowlesi were collected in Sabah,Malaysian Borneo and Peninsular Malaysia.The S-type SSU rRNA gene was amplified using polymerase chain reaction,cloned into a vector,and sequenced.The natural selection and haplotype of the S-type SSU rRNA gene sequences were determined using DnaSP v6 and illustrated using NETWORK v10.This study's 39 S-type SSU rRNA sequences and eight sequences from the Genbank database were subjected to phylogenetic analysis using MEGA 11.Results:Overall,the phylogenetic analysis showed no evidence of a geographical cluster of P.knowlesi isolates from different areas in Malaysia based on the S-type SSU rRNA gene sequences.The S-type SSU rRNA gene sequences were relatively conserved and with a purifying effect.Haplotype sharing of the S-type SSU rRNA gene was observed between the P.knowlesi isolates in Sabah,Malaysian Borneo,but not between Sabah,Malaysian Borneo and Peninsular Malaysia.Conclusions:This study suggests that the S-type SSU rRNA gene of P.knowlesi isolates in Sabah,Malaysian Borneo,and Peninsular Malaysia has fewer polymorphic sites,representing the conservation of the gene.These features make the S-type SSU rRNA gene suitable for comparative studies,such as determining the evolutionary relationships and common ancestry among P.knowlesi species.展开更多
Jute mallow is a nutritious leafy vegetable. The leaves are rich in proteins, vitamins and essential amino acids. Molecular characterization of Jute mallow with focus on improvement of leaf yield is scarcely reported....Jute mallow is a nutritious leafy vegetable. The leaves are rich in proteins, vitamins and essential amino acids. Molecular characterization of Jute mallow with focus on improvement of leaf yield is scarcely reported. In the present study, inter sequence simple repeats (ISSR) molecular markers were employed to assess genetic diversity and relationships of 83 accessions of Jute mallow from different parts of Africa and Asia conserved at the World Vegetable Center East and Southern Africa. A total of 89 bands were amplified by 8 ISSR primers. Number of polymorphic bands per primer ranged from 2 to 6 with an average of 2.75 bands per primer. Polymorphic information content (PIC) values ranged from 0.390 to 0.760 with average of 0.53. Average Nei’s gene diversity (h) and Shannon’s information index (I) were 0.335 and 0.494 respectively. The highest pairwise genetic distance was 0.431 observed in a population from East Africa accessions. PC1 and PC2 axis explained 21.69% and 11.66% of the total variation respectively. UPGMA cluster analysis grouped the accessions into six main clusters at genetic similarity coefficient of 0.53 as standard value for classification. These results have important implications for jute mallow breeding and conservation.展开更多
BACKGROUND Occult hepatitis B infection(OBI)is a globally prevalent infection,with its frequency being influenced by the prevalence of hepatitis B virus(HBV)infection in a particular geographic region,including Africa...BACKGROUND Occult hepatitis B infection(OBI)is a globally prevalent infection,with its frequency being influenced by the prevalence of hepatitis B virus(HBV)infection in a particular geographic region,including Africa.OBI can be transmitted th-rough blood transfusions and organ transplants and has been linked to the development of hepatocellular carcinoma(HCC).The associated HBV genotype influences the infection.AIM To highlight the genetic diversity and prevalence of OBI in Africa.METHODS This systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and involved a comprehensive search on PubMed,Google Scholar,Science Direct,and African Journals Online for published studies on the prevalence and genetic diversity of OBI in Africa.RESULTS The synthesis included 83 articles,revealing that the prevalence of OBI varied between countries and population groups,with the highest prevalence being 90.9%in patients with hepatitis C virus infection and 38%in blood donors,indicating an increased risk of HBV transmission through blood transfusions.Cases of OBI reactivation have been reported following chemotherapy.Genotype D is the predominant,followed by genotypes A and E.CONCLUSION This review highlights the prevalence of OBI in Africa,which varies across countries and population groups.The study also demonstrates that genotype D is the most prevalent.展开更多
This study explores the use of genetic variability for advancing the genetic improvement of Cowpea (Vigna unguiculata (L.) Walp), particularly in response to insect infestation stress. Over a period spanning 2015 to 2...This study explores the use of genetic variability for advancing the genetic improvement of Cowpea (Vigna unguiculata (L.) Walp), particularly in response to insect infestation stress. Over a period spanning 2015 to 2017, forty accessions of cowpeas were evaluated to determine their variability under both insecticide spray and no insecticide spray conditions at the Teachings and Research Farms, Federal University of Agriculture, Abeokuta. The experimental design was a randomized complete block design in three replicates. The accessions were evaluated for plant height, leaf length, leaf width, number of days of 50% flowering, number of pods per plant, pod length, number of seeds per plant, 100-seed weight, and seed yield. Data collected were subjected to principal component and single linkage cluster analyses. Principal axis I (PCA1) accounted for 39% and 35% under insecticide spray and no insecticide spray respectively to the total variation in the accessions. Plant height with a factor score of 0.38, leaf length (0.41), number of leaves (0.37), and 100-seed, weight (0.30) was related to PCAI under insecticide spray while leaf width (0.32). Pod length (0.37) and number of seeds/plant (0.38) were significant to PCA1 under no insecticide spray. Notably, accessions such as SAMPEA6, SAMPEA10, IFE-Brown, and IFE-BPE exhibited consistent performance across both conditions, while others displayed condition-specific attributes. For instance, NGB1063, NGB1152, and NGB1093 demonstrated distinct traits under insecticide spray, while NGB1146 and NGB1124 exhibited notable characteristics under no insecticide spray conditions. Therefore, identifying these forty accessions with desirable traits hold promise for future genetic improvement efforts of cowpea cultivation in Nigeria and beyond.展开更多
Background:Numerous studies have demonstrated the existence of approximately 7,500 genetic tomato varieties worldwide.Hence,it is crucial to assess the genetic diversity among tomato cultivars.This study aimed to inve...Background:Numerous studies have demonstrated the existence of approximately 7,500 genetic tomato varieties worldwide.Hence,it is crucial to assess the genetic diversity among tomato cultivars.This study aimed to investigate the genetic diversity of selected Iranian tomato cultivars(Solanum lycopersicum)using RAPD and ISSR molecular markers.Method:Ten RAPD primers and ten ISSR primers were employed to assess the genetic diversity among 10 tomato cultivars:Matin,RFT 112,Hirad,Golsar,Raha,Hengam,Hedah,Fasa,JS12,and Emerald.Data analysis involved the UPGMA algorithm and NTYSYSpc software.Results:RAPD analysis revealed close genetic proximity between Fasa and JS12,as well as between Raha and Hadieh.Conversely,the RFT 112,Hengam,Hirad,and Emerald cultivars exhibited significant genetic diversity within this group.ISSR primer analysis identified Hengam as the most diverse variety,while Matin,Emerald,and Vibrid,as well as Raha and JS12,displayed genetic similarities with minimal observed diversity.Furthermore,the overall analysis of the cultivars using RAPD and ISSR markers indicated that Hengam exhibited the highest diversity among all the varieties.Notably,Raha and JS12 demonstrated limited diversity in this analysis.Conclusion:This research demonstrates substantial genetic diversity among the investigated tomato varieties,with Hengam displaying the highest diversity within this group.Furthermore,ISSR markers proved more effective in determining genetic diversity in tomato plants.展开更多
Chinese ginseng (Panaxginseng) is a medically important herb within Panax and has crucial cultural values in East Asia. As the symbol of traditional Chinese medicine, Chinese ginseng has been used as a herbal remedy...Chinese ginseng (Panaxginseng) is a medically important herb within Panax and has crucial cultural values in East Asia. As the symbol of traditional Chinese medicine, Chinese ginseng has been used as a herbal remedy to restore stamina and capacity in East Asia for thousands of years. To address the evolutionary origin and domestication history of cultivated ginseng, we employed multiple molecular approaches to investigate the genetic structures of cultivated and wild ginseng across their distribution ranges in northeastern Asia. Phylogenetic and population genetic analyses revealed that the four cultivated ginseng landraces, COMMON, BIANTIAO, SHIZHU, and GAOLI (also known as Korean ginseng), were not domesticated independently and Fusong Town is likely one of the primary domestication centers. In addition, our results from population genetic and epigenetic analyses demonstrated that cultivated ginseng maintained high levels of genetic and epigenetic diversity, but showed distinct cytosine methylation patterns compared with wild ginseng. The patterns of genetic and epigenetic variation revealed by this study have shed light on the domestication history of cultivated ginseng, which may serve as a framework for future genetic improvements.展开更多
Many different chicken breeds are found around the world,their features vary among them,and they are valuable resources.Currently,there is a huge lack of knowledge of the genetic determinants responsible for phenotypi...Many different chicken breeds are found around the world,their features vary among them,and they are valuable resources.Currently,there is a huge lack of knowledge of the genetic determinants responsible for phenotypic and biochemical properties of these breeds of chickens.Understanding the underlying genetic mechanisms that explain across-breed variation can help breeders develop improved chicken breeds.The whole-genomes of 140 chickens from 7 Shandong native breeds and 20 introduced recessive white chickens from China were re-sequenced.Comparative population genomics based on autosomal single nucleotide polymorphisms(SNPs)revealed geographically based clusters among the chickens.Through genome-wide scans for selective sweeps,we identified thyroid stimulating hormone receptor(TSHR,reproductive traits,circadian rhythm),erythrocyte membrane protein band 4.1 like 1(EPB41L1,body size),and alkylglycerol monooxygenase(AGMO,aggressive behavior),as major candidate breed-specific determining genes in chickens.In addition,we used a machine learning classification model to predict chicken breeds based on the SNPs significantly associated with recourse characteristics,and the prediction accuracy was 92%,which can effectively achieve the breed identification of Laiwu Black chickens.We provide the first comprehensive genomic data of the Shandong indigenous chickens.Our analyses revealed phylogeographic patterns among the Shandong indigenous chickens and candidate genes that potentially contribute to breed-specific traits of the chickens.In addition,we developed a machine learning-based prediction model using SNP data to identify chicken breeds.The genetic basis of indigenous chicken breeds revealed in this study is useful to better understand the mechanisms underlying the resource characteristics of chicken.展开更多
Sweetpotato, Ipomoea batatas(L.) Lam., is an important food crop worldwide. Large scale evaluation of sweetpotato germplasm for genetic diversity is necessary to determine the genetic relationships between them and ef...Sweetpotato, Ipomoea batatas(L.) Lam., is an important food crop worldwide. Large scale evaluation of sweetpotato germplasm for genetic diversity is necessary to determine the genetic relationships between them and effectively use them in the genetic improvement. In this study, the genetic diversity of 617 sweetpotato accessions, including 376landraces and 162 bred varieties from China and 79 introduced varieties from 11 other countries, was assessed using 30 simple sequence repeat(SSR) primer pairs with high polymorphism. Based on the population structure analysis,these sweetpotato accessions were divided into three groups, Group 1, Group 2 and Group 3, which included 228, 136and 253 accessions, respectively. Consistent results were obtained by phylogenic analysis and principal coordinate analysis(PCoA). Of the three groups, Group 2 showed the highest level of genetic diversity and its accessions were mainly distributed in low-latitude regions. The accessions from South China exhibited the highest level of genetic diversity, which supports the hypothesis that Fujian and Guangdong were the first regions where sweetpotato was introduced to China. Analysis of molecular variance(AMOVA) indicated significant genetic differentiations between the different groups, but low levels of genetic differentiation existed between the different origins and accession types.These results provide valuable information for the better utilization of these accessions in sweetpotato breeding.展开更多
The tea plant[Camellia sinensis(L.)O.Kuntze]is an industrial crop in China.The Anhui Province has a long history of tea cultivation and has a large resource of tea germplasm with abundant genetic diversity.To reduce t...The tea plant[Camellia sinensis(L.)O.Kuntze]is an industrial crop in China.The Anhui Province has a long history of tea cultivation and has a large resource of tea germplasm with abundant genetic diversity.To reduce the cost of conservation and utilization of germplasm resources,a core collection needs to be constructed.To this end,573 representative tea accessions were collected from six major tea-producing areas in Anhui Province.Based on 60 pairs of simple sequence repeat(SSR)markers,phylogenetic relationships,population structure and principal coordinate analysis(PCoA)were conducted.Phylogenetic analysis indicated that the 573 tea individuals clustered into five groups were related to geographical location and were consistent with the results of the PCoA.Finally,we constructed a core collection consisting of 115 tea individuals,accounting for 20%of the whole collection.The 115 core collections were considered to have a 90.9%retention rate for the observed number of alleles(Na),and Shannon’s information index(I)of the core and whole collections were highly consistent.Of these,39 individuals were preserved in the Huangshan area,accounting for 33.9%of the core collection,while only 10 individuals were reserved in the Jinzhai County,accounting for 8.9%of the core set.PCoA of the accessions in the tea plant core collection exhibited a pattern nearly identical to that of the accessions in the entire collection,further supporting the broad representation of the core germplasm in Anhui Province.The results demonstrated that the core collection could represent the genetic diversity of the original collection.Our present work is valuable for the high-efficiency conservation and utilization of tea plant germplasms in Anhui Province.展开更多
Propylea japonica(Coleoptera:Coccinellidae)is a natural enemy insect with a wide range of predation in Chinese mainland and is commonly used in pest management.However,its genetic pattern(i.e.,genetic variation,geneti...Propylea japonica(Coleoptera:Coccinellidae)is a natural enemy insect with a wide range of predation in Chinese mainland and is commonly used in pest management.However,its genetic pattern(i.e.,genetic variation,genetic structure,and historical population dynamics)is still unclear,impeding the development of biological control of insect pests.Population genetic research has the potential to optimize strategies at different stages of the biological control processes.This study used 23 nuclear microsatellite sites and mitochondrial COI genes to investigate the population genetics of Propylea japonica based on 462 specimens collected from 30 sampling sites in China.The microsatellite dataset showed a moderate level of genetic diversity,but the mitochondrial genes showed a high level of genetic diversity.Populations from the Yellow River basin were more genetically diverse than those in the Yangtze River basin.Propylea japonica has not yet formed a significant genealogical structure in China,but there was a population structure signal to some extent,which may be caused by frequent gene flow between populations.The species has experienced population expansion after a bottleneck,potentially thanks to the tri-trophic plant–insect–natural enemy relationship.Knowledge of population genetics is of importance in using predators to control pests.Our study complements existing knowledge of an important natural predator in agroecosystems through estimating its genetic diversity and population differentiation and speculating about historical dynamics.展开更多
Larix resources in the Qinghai-Tibet Plateau have important ecological and economic values.However,the lack of genetic diversity background and related research hinders the development of conservation strategies.In th...Larix resources in the Qinghai-Tibet Plateau have important ecological and economic values.However,the lack of genetic diversity background and related research hinders the development of conservation strategies.In this study,genetic diversity and distribution of fi ve Larix species were investigated.Using 19 polymorphic microsatellite markers to study 272 representative individuals from 13 populations,the results show low genetic diversity at the population level,with variation explained mainly by diff erentiation among populations.The Larix populations were classifi ed into two clades,one formed by eight populations,including three of the species in this study,L.kongboensis,L.speciosa,and L.potaninii var.australis.The other clade consists of fi ve populations,including the other two species in this study,L.griffi thii and L.himalaica.Genetic distance of the species was aff ected by geographical isolation and genetic diversity was mainly aff ected by altitude.The area suitable for Larix spp.decreased during the Last Glacial Maximum compared to the current distribution according to the niche model,but should increase in future climate scenarios(2050s),expanding westward along the Himalayas.These results provide an important scientifi c basis for the development of conservation strategies and further the sustainable utilization of Larix resources in the Qinghai-Tibet Plateau.展开更多
Acanthogobius ommaturus, which belongs to the family Gobiidae, is a euryhaline and demersal fish that is widely distributed in the coastal areas, harbors, and estuaries of China, D. P. R. Korea and Japan. In this stud...Acanthogobius ommaturus, which belongs to the family Gobiidae, is a euryhaline and demersal fish that is widely distributed in the coastal areas, harbors, and estuaries of China, D. P. R. Korea and Japan. In this study, the genetic diversity and genetic structure of five geographical populations of A. ommaturus was assessed using the mitochondrial hypervariable region gene and microsatellite markers. The results of the two genetic markers indicated that the A. ommaturus populations had a high level of genetic diversity. The mitochondrial marker detected weak genetic differentiation among populations, and the Neighbor-Joining tree showed that there was no obvious pedigree branches and geographic structure as well. However, population of Zhoushan showed significant genetic differentiation with other populations by microsatellite markers. The population of A.ommaturus has not experienced bottleneck effect recently. We speculated that the Pleistocene climate change and juvenile fish dispersal played an important role in the population differentiation of A. ommaturus.展开更多
Amphioctopus fangsiao(Cephalopoda:Octopodidae)is an important commercial species in the coastal waters of China.In recent years,however,the resource of A.fangsiao have declined because of habitat destruction and overf...Amphioctopus fangsiao(Cephalopoda:Octopodidae)is an important commercial species in the coastal waters of China.In recent years,however,the resource of A.fangsiao have declined because of habitat destruction and overfishing.To analyze the genetic variations of A.fangsiao caused by the fluctuation of resources,the population genetic structure of nine sampling locations collected from the Bohai Sea to the South China Sea were investigated,using mtDNA COI fragments and microsatellite DNA.The results of F-statistics,AMOVA,STRUCTURE and PCA analyses showed three phylogeographic clades(Clades A,B and C),revealing limited genetic exchange between north and south populations.These clades diverged in 2.23(Clades A and B)and 3.67(Clades A,B and C)million years ago,during the dramatic environmental fluctuations,such as sea level and temperature changes,have exerted great influence on the survival distribution pattern of global organisms.Our results for low genetic connectivity among A.fangsiao populations provide insights into the development of management strategies,that is,to manage this species as separate management unit.展开更多
Background:Busulfan(BU)is an alkylating agent used as a conditioning agent prior to hematopoietic stem cell(HSC)transplantation as it is known to be cytotoxic to host hematopoietic stem and progenitor cells.The suscep...Background:Busulfan(BU)is an alkylating agent used as a conditioning agent prior to hematopoietic stem cell(HSC)transplantation as it is known to be cytotoxic to host hematopoietic stem and progenitor cells.The susceptibility of HSCs to BU injury plays an important role in the myeloablative efficacy of BU.Different susceptibilities were demonstrated in genetically diverse(GD)mice in our preliminary research.Methods:Three strains of GD mice with different susceptibilities to BU-i nduced HSC injury were used for screening biological markers of HSC injury susceptibility in urine.The urine proteins were analyzed using liquid chromatography coupled with tandem mass spectrometry to screen for differentially expressed proteins.Screening for possible biomarkers based on differences in protein expression abundance was validated using enzyme-l inked immunoassay(ELISA).Results:Functional analysis showed that the differential proteins were all involved in a series of biological pathways related to cellular senescence,apoptosis,and angiogenesis;whereas the differential proteins of the high-susceptible strain were enriched for the regulation of bone marrow microenvironment pathways,those of low-susceptible strain were enriched for the proapoptotic effect of GTPase pathways.Based on protein abundance differences,several urinary proteins that may be indicative of susceptibility were screened,and ELISA validation results showed that angiotensin-converting enzyme may be a potential biomarker predicting HSC susceptibility for BU conditioning.Conclusions:This study indicates that urinary protein levels can reflect differences in susceptibility to BU-i nduced HSC injury.Using GD mice to construct genetic difference models will provide preclinical data for screening BU-related biological markers.展开更多
基金Supported by Natural Science Foundation of Hubei Province(2005ABA084)Major Projects of Hubei Provincial Department of Education (04Z002)~~
文摘[Objective] The aim was to study the genetic diversities between Xiaogan water chestnut and wild chestnut with randomly amplified polymorphic DNA (RAPD) technology. [Method] Genetic diversities of the local cultivated water chestnut,wild chestnut,Lepironia articulata and Scirpus planiculmis Fr. Schmidt were analyzed by RAPD technology. [Result] Among the screened random primers 841,842,807 and 840,the polymorphism of amplification product of 841 was evident,and the obtained bands in electrophoresis were clear and showed good repeatability. Cluster analysis result showed that the affinity of cultivated water chestnut and wild water chestnut was nearer than that between Lepironia articulata and Scirpus planiculmis. [Conclusion] The research provides theoretical basis for cultivating high-quality new varieties of water chestnut.
基金supported by grants from the National Natural Science Foundation of China(32170398,42211540718,32260149,41971071)the Top-notch Young Talents Project of Yunnan Provincial“Ten Thousand Talents Program”(YNWR-QNBJ-2018-146)+5 种基金CAS“Light ofWest China”Program,and Natural Science Foundation of Yunnan(202201AT070222)the Fund of Yunnan Key Laboratory of Crop Wild Relatives Omics(CWR-2024-04)the Jiangxi Provincial Natural Science Foundation(20224BAB215012)the Science and Technology Research Project of Jiangxi Provincial Department of Education(GJJ2202401)Key Research Program of Frontier Sciences,CAS(ZDBSLY-7001)Yunnan Fundamental Research Projects(202201BC070001).
文摘The common walnut(Juglans regia)is one of the most economically important nut trees cultivated worldwide.Despite its importance,no comprehensive evaluation of walnut tree population genetics has been undertaken across the range where it originated,Central Asia.In this study,we investigated the genetic diversity and population structure of 1082 individuals from 46 populations across Central Asia.We found moderate genetic diversity of J.regia across Central Asia,with 46 populations clustered into three groups with a weak relationship between genetic and geographic distance.Our findings reveal that the western Himalaya might be the core region of common walnut genetic diversity in Central Asia and that,except for two populations in Gongliu Wild Walnut Valley,humans might have introduced walnut populations to Xinjiang,China.The observed distribution of the genetic landscape has probably been affected by historical climate fluctuation,breeding system,and prolonged anthropogenic activity.We propose the conservation of the core genetic diversity resources in the western Himalaya and pay special attention to populations from Gongliu in Xinjiang.These findings enhance our understanding of the genetic variation throughout the distribution range of J.regia in Central Asia,which will provide a key prerequisite for evidence-based conservation and management.
基金funded by the grant National Key R&D Program of China(2017ZX10103011-004 and 2018YFC1603804)the Science and Technology Program of Guangdong Province(2018B020207013 and 2019B030316013).
文摘Objective This study aimed to understand the epidemic status and phylogenetic relationships of rotavirus group A(RVA)in the Pearl River Delta region of Guangdong Province,China.Methods This study included individuals aged 28 days–85 years.A total of 706 stool samples from patients with acute gastroenteritis collected between January 2019 and January 2020 were analyzed for 17 causative pathogens,including RVA,using a Gastrointestinal Pathogen Panel,followed by genotyping,virus isolation,and complete sequencing to assess the genetic diversity of RVA.Results The overall RVA infection rate was 14.59%(103/706),with an irregular epidemiological pattern.The proportion of co-infection with RVA and other pathogens was 39.81%(41/103).Acute gastroenteritis is highly prevalent in young children aged 0–1 year,and RVA is the key pathogen circulating in patients 6–10 months of age with diarrhea.G9P[8](58.25%,60/103)was found to be the predominant genotype in the RVA strains,and the 41 RVA-positive strains that were successfully sequenced belonged to three different RVA genotypes in the phylogenetic analysis.Recombination analysis showed that gene reassortment events,selection pressure,codon usage bias,gene polymorphism,and post-translational modifications(PTMs)occurred in the G9P[8]and G3P[8]strains.Conclusion This study provides molecular evidence of RVA prevalence in the Pearl River Delta region of China,further enriching the existing information on its genetics and evolutionary characteristics and suggesting the emergence of genetic diversity.Strengthening the surveillance of genotypic changes and gene reassortment in RVA strains is essential for further research and a better understanding of strain variations for further vaccine development.
基金Supported by the Laoshan Laboratory (No.LSKJ202204005)the Mount Tai Scholar Climbing Plan to Song SUNthe Open Fund of CAS Key Laboratory of Marine Ecology and Environmental Sciences,Institute of Oceanology,Chinese Academy of Sciences (No.KLMEES201801)
文摘Ulva prolifera is the causative species of the annually occurring large-scale green tides in China since 2007.Its specific biological features on reproductivity strategies,as well as intra-species genetic diversity,are still largely unknown,especially at the genome level,despite their importance in understanding the formation and outbreak of massive green tides.In the present study,the restriction site-associated DNA genotyping approach(2b-RAD)was adopted to identify the genome-wide single-nucleotide polymorphisms(SNPs)of 54 individual thalli including samples collected from Subei Shoal in 2019 and Qingdao coast from 2019 to 2021.SNPs genotype results revealed that most of the thalli in 2019 and 2020 were haploid gametophytes,while only half of the thalli were gametophytes in 2021,indicating flexibility in the reproductive strategies for the formation of the green tides among different years and the dominance of asexual and vegetative reproductive mode for the floating period.Besides,population analysis was conducted,and it revealed a very low genetic diversity among samples from Subei Shoal and the Qingdao coast in the same year and a higher divergence among samples in different years.The results showed the efficiency of 2b-RAD in the exploration of SNPs in U.prolifera and provided the first genome-wide scale evidence for the origin of the large-scale green tides on the Qingdao coast.This study improved our understanding of the reproductive strategy and genetic diversity of the green tide causative species and will help further reveal the biological causes of the green tide in China.
基金supported by Liangzi Lake reservesupported by the International Partnership Program of Chinese Academy of Sciences [Grant number, 152342KYSB20200021]+1 种基金the National Key R and D Program of China [Grant numbers, 2020YFD0900305, 2018YFD0900801]National Natural Science Foundation of China [Grant numbers, 32001107, 32201285, 32101254]
文摘Macrophyte habitats exhibit remarkable heterogeneity,encompassing the spatial variation of abiotic and biotic components such as changes in water conditions and weather as well as anthropogenic stressors.Environmental factors are thought to be important drivers shaping the genetic and epigenetic variation of aquatic plants.However,the links among genetic diversity,epigenetic variation,and environmental variables remain largely unclear,especially for clonal aquatic plants.Here,we performed population genetic and epigenetic analyses in conjunction with habitat discrimination to elucidate the environmental factors driving intraspecies genetic and epigenetic variation in hornwort(Ceratophyllum demersum)in a subtropical lake.Environmental factors were highly correlated with the genetic and epigenetic variation of C.demersum,with temperature being a key driver of the genetic variation.Lower temperature was detected to be correlated with greater genetic and epigenetic variation.Genetic and epigenetic variation were positively driven by water temperature,but were negatively affected by ambient air temperature.These findings indicate that the genetic and epigenetic variation of this clonal aquatic herb is not related to the geographic feature but is instead driven by environmental conditions,and demonstrate the effects of temperature on local genetic and epigenetic variation in aquatic systems.
基金supported by funds from the National Natural Science Foundation of China(31970363,31161140350)the Key Basic Research Program of Yunnan Province,China(202101BC070003)supported by the Scottish Government’s Rural and Environment Science and Analytical Services division。
文摘Chinese Assam tea(Camellia sinensis var.assamica)is an important tea crop with a long history of cultivation in Yunnan,China.Despite its potential value as a genetic resource,its genetic diversity and domestication/breeding history remain unclear.To address this issue,we genotyped 469 ancient tea plant trees representing 26 C.sinensis var.assamica populations,plus two of its wild relatives(six and three populations of C.taliensis and C.crassicolumna,respectively)using 16 nuclear microsatellite loci.Results showed that Chinese Assam tea has a relatively high,but comparatively lower gene diversity(H_(S)=0.638)than the wild relative C.crassicolumna(H_S=0.658).Clustering in STRUCTURE indicated that Chinese Assam tea and its two wild relatives formed distinct genetic groups,with considerable interspecific introgression.The Chinese Assam tea accessions clustered into three gene pools,corresponding well with their geographic distribution.However,New Hybrids analysis indicated that 68.48%of ancient Chinese Assam tea plants from Xishuangbanna were genetic intermediates between the Puer and Lincang gene pools.In addition,10%of the ancient Chinese Assam tea individuals were found to be hybrids between Chinese Assam tea and C.taliensis.Our results suggest that Chinese Assam tea was domesticated separately in three gene pools(Puer,Lincang and Xishuangbanna)in the Mekong River valley and that the hybrids were subsequently selected during the domestication process.Although the domestication history of Chinese Assam tea in southwestern Yunnan remains complex,our results will help to identify valuable genetic resources that may be useful in future tea breeding programs.
基金This study was supported by the Ministry of Higher Education,Malaysia(FRGS0322-SG-1/2013)Universiti Malaysia Sabah(GUG0521-2/2020).
文摘Objective:To determine the genetic diversity of Plasmodium(P.)knowlesi isolates from Sabah,Malaysian Borneo and Peninsular Malaysia,targeting the S-type SSU rRNA gene and including aspects of natural selection and haplotype.Methods:Thirty-nine blood samples infected with P.knowlesi were collected in Sabah,Malaysian Borneo and Peninsular Malaysia.The S-type SSU rRNA gene was amplified using polymerase chain reaction,cloned into a vector,and sequenced.The natural selection and haplotype of the S-type SSU rRNA gene sequences were determined using DnaSP v6 and illustrated using NETWORK v10.This study's 39 S-type SSU rRNA sequences and eight sequences from the Genbank database were subjected to phylogenetic analysis using MEGA 11.Results:Overall,the phylogenetic analysis showed no evidence of a geographical cluster of P.knowlesi isolates from different areas in Malaysia based on the S-type SSU rRNA gene sequences.The S-type SSU rRNA gene sequences were relatively conserved and with a purifying effect.Haplotype sharing of the S-type SSU rRNA gene was observed between the P.knowlesi isolates in Sabah,Malaysian Borneo,but not between Sabah,Malaysian Borneo and Peninsular Malaysia.Conclusions:This study suggests that the S-type SSU rRNA gene of P.knowlesi isolates in Sabah,Malaysian Borneo,and Peninsular Malaysia has fewer polymorphic sites,representing the conservation of the gene.These features make the S-type SSU rRNA gene suitable for comparative studies,such as determining the evolutionary relationships and common ancestry among P.knowlesi species.
文摘Jute mallow is a nutritious leafy vegetable. The leaves are rich in proteins, vitamins and essential amino acids. Molecular characterization of Jute mallow with focus on improvement of leaf yield is scarcely reported. In the present study, inter sequence simple repeats (ISSR) molecular markers were employed to assess genetic diversity and relationships of 83 accessions of Jute mallow from different parts of Africa and Asia conserved at the World Vegetable Center East and Southern Africa. A total of 89 bands were amplified by 8 ISSR primers. Number of polymorphic bands per primer ranged from 2 to 6 with an average of 2.75 bands per primer. Polymorphic information content (PIC) values ranged from 0.390 to 0.760 with average of 0.53. Average Nei’s gene diversity (h) and Shannon’s information index (I) were 0.335 and 0.494 respectively. The highest pairwise genetic distance was 0.431 observed in a population from East Africa accessions. PC1 and PC2 axis explained 21.69% and 11.66% of the total variation respectively. UPGMA cluster analysis grouped the accessions into six main clusters at genetic similarity coefficient of 0.53 as standard value for classification. These results have important implications for jute mallow breeding and conservation.
文摘BACKGROUND Occult hepatitis B infection(OBI)is a globally prevalent infection,with its frequency being influenced by the prevalence of hepatitis B virus(HBV)infection in a particular geographic region,including Africa.OBI can be transmitted th-rough blood transfusions and organ transplants and has been linked to the development of hepatocellular carcinoma(HCC).The associated HBV genotype influences the infection.AIM To highlight the genetic diversity and prevalence of OBI in Africa.METHODS This systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and involved a comprehensive search on PubMed,Google Scholar,Science Direct,and African Journals Online for published studies on the prevalence and genetic diversity of OBI in Africa.RESULTS The synthesis included 83 articles,revealing that the prevalence of OBI varied between countries and population groups,with the highest prevalence being 90.9%in patients with hepatitis C virus infection and 38%in blood donors,indicating an increased risk of HBV transmission through blood transfusions.Cases of OBI reactivation have been reported following chemotherapy.Genotype D is the predominant,followed by genotypes A and E.CONCLUSION This review highlights the prevalence of OBI in Africa,which varies across countries and population groups.The study also demonstrates that genotype D is the most prevalent.
文摘This study explores the use of genetic variability for advancing the genetic improvement of Cowpea (Vigna unguiculata (L.) Walp), particularly in response to insect infestation stress. Over a period spanning 2015 to 2017, forty accessions of cowpeas were evaluated to determine their variability under both insecticide spray and no insecticide spray conditions at the Teachings and Research Farms, Federal University of Agriculture, Abeokuta. The experimental design was a randomized complete block design in three replicates. The accessions were evaluated for plant height, leaf length, leaf width, number of days of 50% flowering, number of pods per plant, pod length, number of seeds per plant, 100-seed weight, and seed yield. Data collected were subjected to principal component and single linkage cluster analyses. Principal axis I (PCA1) accounted for 39% and 35% under insecticide spray and no insecticide spray respectively to the total variation in the accessions. Plant height with a factor score of 0.38, leaf length (0.41), number of leaves (0.37), and 100-seed, weight (0.30) was related to PCAI under insecticide spray while leaf width (0.32). Pod length (0.37) and number of seeds/plant (0.38) were significant to PCA1 under no insecticide spray. Notably, accessions such as SAMPEA6, SAMPEA10, IFE-Brown, and IFE-BPE exhibited consistent performance across both conditions, while others displayed condition-specific attributes. For instance, NGB1063, NGB1152, and NGB1093 demonstrated distinct traits under insecticide spray, while NGB1146 and NGB1124 exhibited notable characteristics under no insecticide spray conditions. Therefore, identifying these forty accessions with desirable traits hold promise for future genetic improvement efforts of cowpea cultivation in Nigeria and beyond.
文摘Background:Numerous studies have demonstrated the existence of approximately 7,500 genetic tomato varieties worldwide.Hence,it is crucial to assess the genetic diversity among tomato cultivars.This study aimed to investigate the genetic diversity of selected Iranian tomato cultivars(Solanum lycopersicum)using RAPD and ISSR molecular markers.Method:Ten RAPD primers and ten ISSR primers were employed to assess the genetic diversity among 10 tomato cultivars:Matin,RFT 112,Hirad,Golsar,Raha,Hengam,Hedah,Fasa,JS12,and Emerald.Data analysis involved the UPGMA algorithm and NTYSYSpc software.Results:RAPD analysis revealed close genetic proximity between Fasa and JS12,as well as between Raha and Hadieh.Conversely,the RFT 112,Hengam,Hirad,and Emerald cultivars exhibited significant genetic diversity within this group.ISSR primer analysis identified Hengam as the most diverse variety,while Matin,Emerald,and Vibrid,as well as Raha and JS12,displayed genetic similarities with minimal observed diversity.Furthermore,the overall analysis of the cultivars using RAPD and ISSR markers indicated that Hengam exhibited the highest diversity among all the varieties.Notably,Raha and JS12 demonstrated limited diversity in this analysis.Conclusion:This research demonstrates substantial genetic diversity among the investigated tomato varieties,with Hengam displaying the highest diversity within this group.Furthermore,ISSR markers proved more effective in determining genetic diversity in tomato plants.
基金This work was financially supported by the National Natural Science Foundation of China (31470010 to L.F.L.) and the Program for Introducing Talents to Universities (B07017 to B.L.).We thank James Schnable and two anonymous reviewers for their valuable comments and suggestions, which have greatly improved the manuscript, We also thank Richard Abbott for his pre-reviewing of the manuscript, Joao Sollari Lopes for his help with the popABC analyses, Mingzhou Sun, Yuezhi Pan, Zhenhui Wang, and Peng Peng for their assistance with material collection and data analyses. No conflict of interest declared.
文摘Chinese ginseng (Panaxginseng) is a medically important herb within Panax and has crucial cultural values in East Asia. As the symbol of traditional Chinese medicine, Chinese ginseng has been used as a herbal remedy to restore stamina and capacity in East Asia for thousands of years. To address the evolutionary origin and domestication history of cultivated ginseng, we employed multiple molecular approaches to investigate the genetic structures of cultivated and wild ginseng across their distribution ranges in northeastern Asia. Phylogenetic and population genetic analyses revealed that the four cultivated ginseng landraces, COMMON, BIANTIAO, SHIZHU, and GAOLI (also known as Korean ginseng), were not domesticated independently and Fusong Town is likely one of the primary domestication centers. In addition, our results from population genetic and epigenetic analyses demonstrated that cultivated ginseng maintained high levels of genetic and epigenetic diversity, but showed distinct cytosine methylation patterns compared with wild ginseng. The patterns of genetic and epigenetic variation revealed by this study have shed light on the domestication history of cultivated ginseng, which may serve as a framework for future genetic improvements.
基金funded by the China Agriculture Research System of MOF and MARA(CARS-41)the Agricultural Breed Project of Shandong Province,China(2019LZGC019 and 2020LZGC013)+1 种基金the Shandong Provincial Natural Science Foundation,China(ZR2020MC169)the Agricultural Scientific and Technological Innovation Project of Shandong Academy of Agricultural Sciences,China(CXGC2022C04 and CXGC2022E11).
文摘Many different chicken breeds are found around the world,their features vary among them,and they are valuable resources.Currently,there is a huge lack of knowledge of the genetic determinants responsible for phenotypic and biochemical properties of these breeds of chickens.Understanding the underlying genetic mechanisms that explain across-breed variation can help breeders develop improved chicken breeds.The whole-genomes of 140 chickens from 7 Shandong native breeds and 20 introduced recessive white chickens from China were re-sequenced.Comparative population genomics based on autosomal single nucleotide polymorphisms(SNPs)revealed geographically based clusters among the chickens.Through genome-wide scans for selective sweeps,we identified thyroid stimulating hormone receptor(TSHR,reproductive traits,circadian rhythm),erythrocyte membrane protein band 4.1 like 1(EPB41L1,body size),and alkylglycerol monooxygenase(AGMO,aggressive behavior),as major candidate breed-specific determining genes in chickens.In addition,we used a machine learning classification model to predict chicken breeds based on the SNPs significantly associated with recourse characteristics,and the prediction accuracy was 92%,which can effectively achieve the breed identification of Laiwu Black chickens.We provide the first comprehensive genomic data of the Shandong indigenous chickens.Our analyses revealed phylogeographic patterns among the Shandong indigenous chickens and candidate genes that potentially contribute to breed-specific traits of the chickens.In addition,we developed a machine learning-based prediction model using SNP data to identify chicken breeds.The genetic basis of indigenous chicken breeds revealed in this study is useful to better understand the mechanisms underlying the resource characteristics of chicken.
基金National Key R&D Program of China (2019YFD1001301 and 2019YFD1001300)the earmarked fund for CARS-10Sweetpotato and the Hebei Key R&D Program, China (20326320D)。
文摘Sweetpotato, Ipomoea batatas(L.) Lam., is an important food crop worldwide. Large scale evaluation of sweetpotato germplasm for genetic diversity is necessary to determine the genetic relationships between them and effectively use them in the genetic improvement. In this study, the genetic diversity of 617 sweetpotato accessions, including 376landraces and 162 bred varieties from China and 79 introduced varieties from 11 other countries, was assessed using 30 simple sequence repeat(SSR) primer pairs with high polymorphism. Based on the population structure analysis,these sweetpotato accessions were divided into three groups, Group 1, Group 2 and Group 3, which included 228, 136and 253 accessions, respectively. Consistent results were obtained by phylogenic analysis and principal coordinate analysis(PCoA). Of the three groups, Group 2 showed the highest level of genetic diversity and its accessions were mainly distributed in low-latitude regions. The accessions from South China exhibited the highest level of genetic diversity, which supports the hypothesis that Fujian and Guangdong were the first regions where sweetpotato was introduced to China. Analysis of molecular variance(AMOVA) indicated significant genetic differentiations between the different groups, but low levels of genetic differentiation existed between the different origins and accession types.These results provide valuable information for the better utilization of these accessions in sweetpotato breeding.
基金supported by the Project of Major Science and Technology of Anhui Province,China(202003a06020021)the National Key Research and Development Program of China(2021YFD1200200,2021YFD1200203)+2 种基金the National Natural Science Foundation of China(U20A2045)the Base of Introducing Talents for Tea Plant Biology and Quality Chemistry(D20026)the Anhui Provincial Natural Science Foundation,China(2108085QC121).
文摘The tea plant[Camellia sinensis(L.)O.Kuntze]is an industrial crop in China.The Anhui Province has a long history of tea cultivation and has a large resource of tea germplasm with abundant genetic diversity.To reduce the cost of conservation and utilization of germplasm resources,a core collection needs to be constructed.To this end,573 representative tea accessions were collected from six major tea-producing areas in Anhui Province.Based on 60 pairs of simple sequence repeat(SSR)markers,phylogenetic relationships,population structure and principal coordinate analysis(PCoA)were conducted.Phylogenetic analysis indicated that the 573 tea individuals clustered into five groups were related to geographical location and were consistent with the results of the PCoA.Finally,we constructed a core collection consisting of 115 tea individuals,accounting for 20%of the whole collection.The 115 core collections were considered to have a 90.9%retention rate for the observed number of alleles(Na),and Shannon’s information index(I)of the core and whole collections were highly consistent.Of these,39 individuals were preserved in the Huangshan area,accounting for 33.9%of the core collection,while only 10 individuals were reserved in the Jinzhai County,accounting for 8.9%of the core set.PCoA of the accessions in the tea plant core collection exhibited a pattern nearly identical to that of the accessions in the entire collection,further supporting the broad representation of the core germplasm in Anhui Province.The results demonstrated that the core collection could represent the genetic diversity of the original collection.Our present work is valuable for the high-efficiency conservation and utilization of tea plant germplasms in Anhui Province.
基金supported by a grant from the Key S&T Special Project of Henan,China(201300111500)the National Key R&D Program of China(2018YFD0200600)+1 种基金the Modern Agricultural System in Industry Technology of Henan Province,China(S2015-02-G05)the Key R&D and Promotion Project in Henan Province,China(212102110471).
文摘Propylea japonica(Coleoptera:Coccinellidae)is a natural enemy insect with a wide range of predation in Chinese mainland and is commonly used in pest management.However,its genetic pattern(i.e.,genetic variation,genetic structure,and historical population dynamics)is still unclear,impeding the development of biological control of insect pests.Population genetic research has the potential to optimize strategies at different stages of the biological control processes.This study used 23 nuclear microsatellite sites and mitochondrial COI genes to investigate the population genetics of Propylea japonica based on 462 specimens collected from 30 sampling sites in China.The microsatellite dataset showed a moderate level of genetic diversity,but the mitochondrial genes showed a high level of genetic diversity.Populations from the Yellow River basin were more genetically diverse than those in the Yangtze River basin.Propylea japonica has not yet formed a significant genealogical structure in China,but there was a population structure signal to some extent,which may be caused by frequent gene flow between populations.The species has experienced population expansion after a bottleneck,potentially thanks to the tri-trophic plant–insect–natural enemy relationship.Knowledge of population genetics is of importance in using predators to control pests.Our study complements existing knowledge of an important natural predator in agroecosystems through estimating its genetic diversity and population differentiation and speculating about historical dynamics.
基金supported by the National Natural Science Foundation of China (31660215)Major Scientific and Technological Projects of Guizhou Province ([2018]5261),China+1 种基金the Construction Project for First-Class Ecology Discipline in Guizhou (GNYL [2017] 007),Chinathe China Scholarship Council ([2021]15)
文摘Larix resources in the Qinghai-Tibet Plateau have important ecological and economic values.However,the lack of genetic diversity background and related research hinders the development of conservation strategies.In this study,genetic diversity and distribution of fi ve Larix species were investigated.Using 19 polymorphic microsatellite markers to study 272 representative individuals from 13 populations,the results show low genetic diversity at the population level,with variation explained mainly by diff erentiation among populations.The Larix populations were classifi ed into two clades,one formed by eight populations,including three of the species in this study,L.kongboensis,L.speciosa,and L.potaninii var.australis.The other clade consists of fi ve populations,including the other two species in this study,L.griffi thii and L.himalaica.Genetic distance of the species was aff ected by geographical isolation and genetic diversity was mainly aff ected by altitude.The area suitable for Larix spp.decreased during the Last Glacial Maximum compared to the current distribution according to the niche model,but should increase in future climate scenarios(2050s),expanding westward along the Himalayas.These results provide an important scientifi c basis for the development of conservation strategies and further the sustainable utilization of Larix resources in the Qinghai-Tibet Plateau.
基金The Fundamental Research Funds for the Central Universities under contract No.201964002the National Natural Science Foundation of China under contract No.U20A2087。
文摘Acanthogobius ommaturus, which belongs to the family Gobiidae, is a euryhaline and demersal fish that is widely distributed in the coastal areas, harbors, and estuaries of China, D. P. R. Korea and Japan. In this study, the genetic diversity and genetic structure of five geographical populations of A. ommaturus was assessed using the mitochondrial hypervariable region gene and microsatellite markers. The results of the two genetic markers indicated that the A. ommaturus populations had a high level of genetic diversity. The mitochondrial marker detected weak genetic differentiation among populations, and the Neighbor-Joining tree showed that there was no obvious pedigree branches and geographic structure as well. However, population of Zhoushan showed significant genetic differentiation with other populations by microsatellite markers. The population of A.ommaturus has not experienced bottleneck effect recently. We speculated that the Pleistocene climate change and juvenile fish dispersal played an important role in the population differentiation of A. ommaturus.
基金The National Natural Science Foundation of China under contract Nos 32170536 and 31672257。
文摘Amphioctopus fangsiao(Cephalopoda:Octopodidae)is an important commercial species in the coastal waters of China.In recent years,however,the resource of A.fangsiao have declined because of habitat destruction and overfishing.To analyze the genetic variations of A.fangsiao caused by the fluctuation of resources,the population genetic structure of nine sampling locations collected from the Bohai Sea to the South China Sea were investigated,using mtDNA COI fragments and microsatellite DNA.The results of F-statistics,AMOVA,STRUCTURE and PCA analyses showed three phylogeographic clades(Clades A,B and C),revealing limited genetic exchange between north and south populations.These clades diverged in 2.23(Clades A and B)and 3.67(Clades A,B and C)million years ago,during the dramatic environmental fluctuations,such as sea level and temperature changes,have exerted great influence on the survival distribution pattern of global organisms.Our results for low genetic connectivity among A.fangsiao populations provide insights into the development of management strategies,that is,to manage this species as separate management unit.
基金National Natural Scientific Foundation of ChinaGrant/Award Number:81972975+2 种基金National Human Diseases Animal Model Resource CenterNational Science Foundation for Young Scientists of ChinaGrant/Award Number:81703170。
文摘Background:Busulfan(BU)is an alkylating agent used as a conditioning agent prior to hematopoietic stem cell(HSC)transplantation as it is known to be cytotoxic to host hematopoietic stem and progenitor cells.The susceptibility of HSCs to BU injury plays an important role in the myeloablative efficacy of BU.Different susceptibilities were demonstrated in genetically diverse(GD)mice in our preliminary research.Methods:Three strains of GD mice with different susceptibilities to BU-i nduced HSC injury were used for screening biological markers of HSC injury susceptibility in urine.The urine proteins were analyzed using liquid chromatography coupled with tandem mass spectrometry to screen for differentially expressed proteins.Screening for possible biomarkers based on differences in protein expression abundance was validated using enzyme-l inked immunoassay(ELISA).Results:Functional analysis showed that the differential proteins were all involved in a series of biological pathways related to cellular senescence,apoptosis,and angiogenesis;whereas the differential proteins of the high-susceptible strain were enriched for the regulation of bone marrow microenvironment pathways,those of low-susceptible strain were enriched for the proapoptotic effect of GTPase pathways.Based on protein abundance differences,several urinary proteins that may be indicative of susceptibility were screened,and ELISA validation results showed that angiotensin-converting enzyme may be a potential biomarker predicting HSC susceptibility for BU conditioning.Conclusions:This study indicates that urinary protein levels can reflect differences in susceptibility to BU-i nduced HSC injury.Using GD mice to construct genetic difference models will provide preclinical data for screening BU-related biological markers.