The association between miRNA and disease has attracted more and more attention.Until now,existing methods for identifying miRNA related disease mainly rely on top-ranked association model,which may not provide a full...The association between miRNA and disease has attracted more and more attention.Until now,existing methods for identifying miRNA related disease mainly rely on top-ranked association model,which may not provide a full landscape of association between miRNA and disease.Hence there is strong need of new computational method to identify the associations from miRNA group view.In this paper,we proposed a framework,MDA-TOEPGA,to identify miRNAdisease association based on two-objective evolutionary programming genetic algorithm,which identifies latent miRNAdisease associations from the view of functional module.To understand the miRNA functional module in diseases,the case study is presented.We have been compared MDA-TOEPGA with several state-of-the-art functional module algorithm.Experimental results showed that our method cannot only outperform classical algorithms,such as K-means,IK-means,MCODE,HC-PIN,and ClusterONE,but can also achieve an ideal overall performance in terms of a composite score consisting of f1,Sensitivity,and Accuracy.Altogether,our study showed that MDA-TOEPGA is a promising method to investigate miRNA-disease association from the landscapes of functional module.展开更多
In the face of harsh natural environment applications such as earth-orbiting and deep space satellites, underwater sea vehicles, strong electromagnetic interference and temperature stress,the circuits faults appear ea...In the face of harsh natural environment applications such as earth-orbiting and deep space satellites, underwater sea vehicles, strong electromagnetic interference and temperature stress,the circuits faults appear easily. Circuit faults will inevitably lead to serious losses of availability or impeded mission success without self-repair over the mission duration. Traditional fault-repair methods based on redundant fault-tolerant technique are straightforward to implement, yet their area, power and weight cost can be excessive. Moreover they utilize all plug-in or component level circuits to realize redundant backup, such that their applicability is limited. Hence, a novel selfrepair technology based on evolvable hardware(EHW) and reparation balance technology(RBT) is proposed. Its cost is low, and fault self-repair of various circuits and devices can be realized through dynamic configuration. Making full use of the fault signals, correcting circuit can be found through EHW technique to realize the balance and compensation of the fault output-signals. In this paper, the self-repair model was analyzed which based on EHW and RBT technique, the specific self-repair strategy was studied, the corresponding self-repair circuit fault system was designed, and the typical faults were simulated and analyzed which combined with the actual electronic devices. Simulation results demonstrated that the proposed fault self-repair strategy was feasible. Compared to traditional techniques, fault self-repair based on EHW consumes fewer hardware resources, and the scope of fault self-repair was expanded significantly.展开更多
基金This work was supported in part by the National Natural Science Foundation of China under Grants 61873089,62032007the Key Project of the Education Department of Hunan Province under Grant 20A087the Innovation Platform Open Fund Project of Hunan Provincial Education Department under Grant 20K025.
文摘The association between miRNA and disease has attracted more and more attention.Until now,existing methods for identifying miRNA related disease mainly rely on top-ranked association model,which may not provide a full landscape of association between miRNA and disease.Hence there is strong need of new computational method to identify the associations from miRNA group view.In this paper,we proposed a framework,MDA-TOEPGA,to identify miRNAdisease association based on two-objective evolutionary programming genetic algorithm,which identifies latent miRNAdisease associations from the view of functional module.To understand the miRNA functional module in diseases,the case study is presented.We have been compared MDA-TOEPGA with several state-of-the-art functional module algorithm.Experimental results showed that our method cannot only outperform classical algorithms,such as K-means,IK-means,MCODE,HC-PIN,and ClusterONE,but can also achieve an ideal overall performance in terms of a composite score consisting of f1,Sensitivity,and Accuracy.Altogether,our study showed that MDA-TOEPGA is a promising method to investigate miRNA-disease association from the landscapes of functional module.
基金supported by the National Natural Science Foundation of China (Nos. 61271153, 61372039)
文摘In the face of harsh natural environment applications such as earth-orbiting and deep space satellites, underwater sea vehicles, strong electromagnetic interference and temperature stress,the circuits faults appear easily. Circuit faults will inevitably lead to serious losses of availability or impeded mission success without self-repair over the mission duration. Traditional fault-repair methods based on redundant fault-tolerant technique are straightforward to implement, yet their area, power and weight cost can be excessive. Moreover they utilize all plug-in or component level circuits to realize redundant backup, such that their applicability is limited. Hence, a novel selfrepair technology based on evolvable hardware(EHW) and reparation balance technology(RBT) is proposed. Its cost is low, and fault self-repair of various circuits and devices can be realized through dynamic configuration. Making full use of the fault signals, correcting circuit can be found through EHW technique to realize the balance and compensation of the fault output-signals. In this paper, the self-repair model was analyzed which based on EHW and RBT technique, the specific self-repair strategy was studied, the corresponding self-repair circuit fault system was designed, and the typical faults were simulated and analyzed which combined with the actual electronic devices. Simulation results demonstrated that the proposed fault self-repair strategy was feasible. Compared to traditional techniques, fault self-repair based on EHW consumes fewer hardware resources, and the scope of fault self-repair was expanded significantly.