期刊文献+
共找到33,500篇文章
< 1 2 250 >
每页显示 20 50 100
Endogenous viral elements in algal genomes 被引量:1
1
作者 WANG Liang WU Shuangxiu +7 位作者 LIU Tao SUN Jing CHI Shan LIU Cui LI Xingang YIN Jinlong WANG Xumin YU Jun 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2014年第2期102-107,共6页
Endogenous viral elements (EVEs) are host-genomic fragments originated from viral genomes. They have been found universally in animal and plant genomes. Here we carried out a systematic screening and analy-sis of EV... Endogenous viral elements (EVEs) are host-genomic fragments originated from viral genomes. They have been found universally in animal and plant genomes. Here we carried out a systematic screening and analy-sis of EVEs in algal genomes and found that EVEs commonly exist in algal genomes. We classified the EVE fragments into three categories according to the length of EVE fragments. Due to the probability of sequence similarity by chance, we ignored the potential function of medium-length EVE fragments. However, long-length EVE fragments probably had capability to encode protein domains or even entire proteins, and some short-length EVE fragments had high similarity with host's siRNA sequences and possibly served functions of small RNAs. Therefore, short and long EVE fragments might provide regulomic and proteomic novelty to the host's metabolism and adaptation. We also found several EVE fragments shared by more than 3 algal genomes. By phylogenetic analysis of the shared EVEs and their corresponding species, we found that the integration of viral fragments into host genomes was an ancient event, possibly before the divergence of Chlorophytes and Ochrophytes. Our findings show that there is a frequent genetic flow from viruses to algal genomes. Moreover, study on algal EVEs shed light on the virus-host interaction in large timescale and could also help us understand the balance of marine ecosystems. 展开更多
关键词 endogenous viral elements ALGAE genome transcriptome
下载PDF
Gapless Genome Assembly of ZH8015 and Preliminary Multi-Omics Analysis to Investigate ZH8015's Responses Against Brown Planthopper Infestation
2
作者 LI Dian DUAN Wenjing +5 位作者 LIU Qun’en WU Weixun ZHAN Xiaodeng SUN Lianping ZHANG Yingxin CHENG Shihua 《Rice science》 SCIE CSCD 2024年第3期317-327,I0042-I0045,共15页
Accurate genomic information is essential for advancing genetic breeding research in specific rice varieties.This study presented a gapless genome assembly of the indica rice cultivar Zhonghui 8015(ZH8015)using Pac Bi... Accurate genomic information is essential for advancing genetic breeding research in specific rice varieties.This study presented a gapless genome assembly of the indica rice cultivar Zhonghui 8015(ZH8015)using Pac Bio HiFi,Hi-C,and ONT(Oxford Nanopore Technologies)ultra-long sequencing technologies,annotating 43037 gene structures.Subsequently,utilizing this genome along with transcriptomic and metabolomic techniques,we explored ZH8015's response to brown planthopper(BPH)infestation.Continuous transcriptomic sampling indicated significant changes in gene expression levels around 48 h after BPH feeding.Enrichment analysis revealed particularly significant alterations in genes related to reactive oxygen species scavenging and cell wall formation.Metabolomic results demonstrated marked increases in levels of several monosaccharides,which are components of the cell wall and dramatic changes in flavonoid contents.Omics association analysis identified differentially expressed genes associated with key metabolites,shedding light on ZH8015's response to BPH infestation.In summary,this study constructed a reliable genome sequence resource for ZH8015,and the preliminary multi-omics results will guide future insect-resistant breeding research. 展开更多
关键词 brown planthopper gapless genome genome assembly multi-omics Nilaparvata lugens rice
下载PDF
Exploiting viral vectors to deliver genome editing reagents in plants
3
作者 Yilin Shen Tao Ye +4 位作者 Zihan Li Torotwa Herman Kimutai Hao Song Xiaoou Dong Jianmin Wan 《aBIOTECH》 EI CAS CSCD 2024年第2期247-261,共15页
Genome editing holds great promise for the molecular breeding of plants,yet its application is hindered by the shortage of simple and effective means of delivering genome editing reagents into plants.Conventional plan... Genome editing holds great promise for the molecular breeding of plants,yet its application is hindered by the shortage of simple and effective means of delivering genome editing reagents into plants.Conventional plant transformation-based methods for delivery of genome editing reagents into plants often involve prolonged tissue culture,a labor-intensive and technically challenging process for many elite crop cultivars.In this review,we describe various virus-based methods that have been employed to deliver genome editing reagents,including components of the CRISPR/Cas machinery and donor DNA for precision editing in plants.We update the progress in these methods with recent successful examples of genome editing achieved through virus-based delivery in different plant species,highlight the advantages and limitations of these delivery approaches,and discuss the remaining challenges. 展开更多
关键词 Plant genome engineering genome editing CRISPR/Cas Virus-based delivery
原文传递
Comparative and Phylogenetic Analysis of the Complete Chloroplast Genomes of 19 Species in Rosaceae Family
4
作者 Riwa Mahai Rongpeng Liu +3 位作者 Xiaolang Du Zejing Mu Xiaoyun Wang Jun Yuan 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第6期1203-1219,共17页
Rosaceae represents a vast and complex group of species,with its classification being intricate and contentious.The taxonomic placement of many species within this family has been a subject of ongoing debate.The study ... Rosaceae represents a vast and complex group of species,with its classification being intricate and contentious.The taxonomic placement of many species within this family has been a subject of ongoing debate.The study utilized the Illumina platform to sequence 19 plant species from 10 genera in the Rosaceae.The cp genomes,vary-ing in size from 153,366 to 159,895 bp,followed the typical quadripartite organization consisting of a large single-copy(LSC)region(84,545 to 87,883 bp),a small single-copy(SSC)region(18,174 to 19,259 bp),and a pair of inverted repeat(IR)regions(25,310 to 26,396 bp).These genomes contained 132–138 annotated genes,including 87 to 93 protein-coding genes(PCGs),37 tRNA genes,and 8 rRNA genes using MISA software,52 to 121 simple sequence repeat(SSR)loci were identified.D.arbuscular contained the least of SSRs and did not have hexanotides,A.lineata contained the richest SSRs.Long terminal repeats(LTRs)were primarily composed of palindromic and forward repeat sequences,meanwhile,The richest LTRs were found in Argentina lineata.Except for Argentina lineata,Fragariastrum eriocarpum,and Prunus trichostoma,which varied in gene type and position on both sides of the boundary,the remaining species were found to be mostly conserved according to IR boundary analysis.The examination of the Ka/Ks ratio revealed that only the infA gene had a value greater than 1,indicating that this gene was primarily subjected to positive selection during evolution.Additionally,9 hotspots of variation were identified in the LSC and SSC regions.Phylogenetic analysis confirmed the scientific validity of the genus Prunus L.sensu lato(s.l.)within the Rosaceae family.The separation of the three genera Argentina Hill,Fragariastrum Heist.ex Fabr.and Dasiphora Raf.from Potentilla L.may be a more scientific classification.These results offer fresh perspectives on the taxonomy of the Rosaceae. 展开更多
关键词 ROSACEAE chloroplast genomes comparative genomes PHYLOGENY
下载PDF
Epistasis-aware genome-wide association studies provide insights into the efficient breeding of high-yield and high-quality rice
5
作者 Xiaogang He Zirong Li +6 位作者 Sicheng Guo Xingfei Zheng Chunhai Liu Zijie Liu Yongxin Li Zheming Yuan Lanzhi Li 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第8期2541-2556,共16页
Marker-assisted selection(MAS)and genomic selection(GS)breeding have greatly improved the efficiency of rice breeding.Due to the influences of epistasis and gene pleiotropy,ensuring the actual breeding effect of MAS a... Marker-assisted selection(MAS)and genomic selection(GS)breeding have greatly improved the efficiency of rice breeding.Due to the influences of epistasis and gene pleiotropy,ensuring the actual breeding effect of MAS and GS is still a difficult challenge to overcome.In this study,113 indica rice varieties(V)and their 565 testcross hybrids(TC)were used as the materials to investigate the genetic basis of 12 quality traits and nine agronomic traits.The original traits and general combining ability of the parents,as well as the original traits and midparent heterosis of TC,were subjected to genome-wide association analysis.In total,381 primary significantly associated loci(SAL)and 1,759 secondary SALs that had epistatic interactions with these primary SALs were detected.Among these loci,322 candidate genes located within or nearby the SALs were screened,204 of which were cloned genes.A total of 39 MAS molecular modules that are beneficial for trait improvement were identified by pyramiding the superior haplotypes of candidate genes and desirable epistatic alleles of the secondary SALs.All the SALs were used to construct genetic networks,in which 91 pleiotropic loci were investigated.Additionally,we estimated the accuracy of genomic prediction in the parent V and TC by incorporating either no SALs,primary SALs,secondary SALs or epistatic effect SALs as covariates.Although the prediction accuracies of the four models were generally not significantly different in the TC dataset,the incorporation of primary SALs,secondary SALs,and epistatic effect SALs significantly improved the prediction accuracies of 5(26%),3(16%),and 11(58%)traits in the V dataset,respectively.These results suggested that SALs and epistatic effect SALs identified based on an additive genotype can provide considerable predictive power for the parental lines.They also provide insights into the genetic basis of complex traits and valuable information for molecular breeding in rice. 展开更多
关键词 rice genome-wide association study EPISTASIS gene pleiotropy maker-associated selection genome selection
下载PDF
Pathogenicity of diatraea saccharalis Densovirus to Host Insets and Characterization of its Viral Genome
6
作者 Nazaire Kouassi Jian-xin PENG +3 位作者 Yi LI Cristina Cavallaro Jean-Claude Veyrunes Max Bergoin 《中国病毒学》 CSCD 2007年第1期53-60,共8页
Diatraea saccharalis densovirus (DsDNV ) 的致病力在它的主人幼虫上被测试。结果证明直到在接种以后的 4 天,没有幼虫死亡被观察,感染的幼虫开始从第四天展出感染症状。在 5 天感染以后,感染的幼虫的累积死亡显著地增加了并且而... Diatraea saccharalis densovirus (DsDNV ) 的致病力在它的主人幼虫上被测试。结果证明直到在接种以后的 4 天,没有幼虫死亡被观察,感染的幼虫开始从第四天展出感染症状。在 5 天感染以后,感染的幼虫的累积死亡显著地增加了并且而分别地,控制组的仅仅在感染的一样的时期以后是10%和20%,在 21 天感染以后在 12 天和100%以后到达了60%,建议感染的幼虫组的高死亡由于 DsDNV 的高致病力。DsDNA 的尺寸被病毒的 DNA 分子的电子显微镜学可视化决定,土著人和 endonuclease 的胶化电气泳动消化了 DNA 碎片。本国的 DsDNA 的全部的长度是大约 5.95 kb。DsDNV DNA 与 16 限制酶被消化,那些酶的一张限制地图与 41 个限制地点被构造。Junonia coenia densovirus (JcDNV ) 和街郎 mellonella densovirus (GmDNV ) 的染色体的有那些的 DsDNV 染色体的限制地图的比较显示三个 densovirus 染色体被发现分享许多相同限制地点。因此,大多数下列 endonucleases 欺骗 H 的限制地点我, Hha 我, Xba 我, Cla 我,毒蛇 700, Spe 我, Nco 我和 Bcl 我,被发现在三个 densovirus 染色体之中被保存。在染色体的两结束印射的对称的劈开地点建议了其尺寸被估计是大约 500 bp 的转换终端重复(国际互联网广播台) 的存在。类似的染色体尺寸,几乎相同的限制地点和为这三 densoviruses 的大约 500 bp 的一个国际互联网广播台的存在建议他们属于 ambisense densoviruses 的一样的组。钥匙词致病力 - Densovirus - Diatraea saccharalis - Genomic DNA - 限制地图 CLC 数字 S852.65 基础条款:中国(30670081 ) 的国家自然科学基础;由 IRD 同意了(研究所 de 精选倒 developpement ) 展开更多
关键词 PATHOGENICITY DENSOVIRUS Diatraea saccharalis Genomic DNA Restriction map
下载PDF
The chromosome-level genome of double-petal phenotype jasmine provides insights into the biosynthesis of floral scent 被引量:1
7
作者 Xiangyu Qi Huadi Wang +7 位作者 Shuyun Liu Shuangshuang Chen Jing Feng Huijie Chen Ziyi Qin Quanming Chen Ikram Blilou Yanming Deng 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第1期259-272,共14页
Jasmine(Jasminum sambac Aiton)is a well-known cultivated plant species for its fragrant flowers used in the perfume industry and cosmetics.However,the genetic basis of its floral scent is largely unknown.In this study... Jasmine(Jasminum sambac Aiton)is a well-known cultivated plant species for its fragrant flowers used in the perfume industry and cosmetics.However,the genetic basis of its floral scent is largely unknown.In this study,using PacBio,Illumina,10×Genomics and highthroughput chromosome conformation capture(Hi-C)sequencing technologies,a high-quality chromosome-level reference genome for J.sambac was obtained,exploiting a double-petal phenotype cultivar‘Shuangbanmoli’(JSSB).The results showed that the final assembled genome of JSSB is 580.33 Mb in size(contig N50=1.05 Mb;scaffold N50=45.07 Mb)with a total of 39618 predicted protein-coding genes.Our analyses revealed that the JSSB genome has undergone an ancient whole-genome duplication(WGD)event at 91.68 million years ago(Mya).It was estimated that J.sambac diverged from the lineage leading to Olea europaea and Osmanthus fragrans about 28.8 Mya.On the basis of a combination of genomic,transcriptomic and metabolomic analyses,a range of floral scent volatiles and genes were identified involved in the benzenoid/phenylpropanoid and terpenoid biosynthesis pathways.The results provide new insights into the molecular mechanism of its fragrance biosynthesis in jasmine. 展开更多
关键词 Jasminum sambac Aiton OLEACEAE genome evolution Floral scent Terpene synthase
下载PDF
Genome-edited rabbits:Unleashing the potential of a promising experimental animal model across diverse diseases 被引量:1
8
作者 Yang Han Jiale Zhou +3 位作者 Renquan Zhang Yuru Liang Liangxue Lai Zhanjun Li 《Zoological Research》 SCIE CSCD 2024年第2期253-262,共10页
Animal models are extensively used in all aspects of biomedical research,with substantial contributions to our understanding of diseases,the development of pharmaceuticals,and the exploration of gene functions.The fie... Animal models are extensively used in all aspects of biomedical research,with substantial contributions to our understanding of diseases,the development of pharmaceuticals,and the exploration of gene functions.The field of genome modification in rabbits has progressed slowly.However,recent advancements,particularly in CRISPR/Cas9-related technologies,have catalyzed the successful development of various genome-edited rabbit models to mimic diverse diseases,including cardiovascular disorders,immunodeficiencies,agingrelated ailments,neurological diseases,and ophthalmic pathologies.These models hold great promise in advancing biomedical research due to their closer physiological and biochemical resemblance to humans compared to mice.This review aims to summarize the novel gene-editing approaches currently available for rabbits and present the applications and prospects of such models in biomedicine,underscoring their impact and future potential in translational medicine. 展开更多
关键词 genome editing Animal model RABBIT CRISPR/Cas9 Genetic diseases
下载PDF
Chromosome-level genome and population genomics of the intermediate horseshoe bat(Rhinolophus affinis)reveal the molecular basis of virus tolerance in Rhinolophus and echolocation call frequency variation
9
作者 Le Zhao Jiaqing Yuan +8 位作者 Guiqiang Wang Haohao Jing Chen Huang Lulu Xu Xiao Xu Ting Sun Wu Chen Xiuguang Mao Gang Li 《Zoological Research》 SCIE CSCD 2024年第5期1147-1160,共14页
Horseshoe bats(genus Rhinolophus,family Rhinolophidae)represent an important group within chiropteran phylogeny due to their distinctive traits,including constant high-frequency echolocation,rapid karyotype evolution,... Horseshoe bats(genus Rhinolophus,family Rhinolophidae)represent an important group within chiropteran phylogeny due to their distinctive traits,including constant high-frequency echolocation,rapid karyotype evolution,and unique immune system.Advances in evolutionary biology,supported by high-quality reference genomes and comprehensive whole-genome data,have significantly enhanced our understanding of species origins,speciation mechanisms,adaptive evolutionary processes,and phenotypic diversity.However,genomic research and understanding of the evolutionary patterns of Rhinolophus are severely constrained by limited data,with only a single published genome of R.ferrumequinum currently available.In this study,we constructed a high-quality chromosome-level reference genome for the intermediate horseshoe bat(R.affinis).Comparative genomic analyses revealed potential genetic characteristics associated with virus tolerance in Rhinolophidae.Notably,we observed expansions in several immune-related gene families and identified various genes functionally associated with the SARS-CoV-2 signaling pathway,DNA repair,and apoptosis,which displayed signs of rapid evolution.In addition,we observed an expansion of the major histocompatibility complex class II(MHC-II)region and a higher copy number of the HLA-DQB2 gene in horseshoe bats compared to other chiropteran species.Based on whole-genome resequencing and population genomic analyses,we identified multiple candidate loci(e.g.,GLI3)associated with variations in echolocation call frequency across R.affinis subspecies.This research not only expands our understanding of the genetic characteristics of the Rhinolophus genus but also establishes a valuable foundation for future research. 展开更多
关键词 Reference-quality genome Comparative genomics Population genomics Positive selection Bats
下载PDF
3D genome organization and its study in livestock breeding
10
作者 Jie Cheng Xiukai Cao +7 位作者 Shengxuan Wang Jiaqiang Zhang Binglin Yue Xiaoyan Zhang Yongzhen Huang Xianyong Lan Gang Ren Hong Chen 《Journal of Integrative Agriculture》 SCIE CSCD 2024年第1期39-58,共20页
Eukaryotic genomes are hierarchically packaged into cell nucleus,affecting gene regulation.The genome is organized into multiscale structural units,including chromosome territories,compartments,topologically associati... Eukaryotic genomes are hierarchically packaged into cell nucleus,affecting gene regulation.The genome is organized into multiscale structural units,including chromosome territories,compartments,topologically associating domains(TADs),and DNA loops.The identification of these hierarchical structures has benefited from the development of experimental approaches,such as 3C-based methods(Hi-C,ChIA-PET,etc.),imaging tools(2D-FISH,3D-FISH,Cryo-FISH,etc.)and ligation-free methods(GAM,SPRITE,etc.).In recent two decades,numerous studies have shown that the 3D organization of genome plays essential roles in multiple cellular processes via various mechanisms,such as regulating enhancer activity and promoter-enhancer interactions.However,there are relatively few studies about the 3D genome in livestock species.Therefore,studies for exploring the function of 3D genomes in livestock are urgently needed to provide a more comprehensive understanding of potential relationships between the genome and production traits.In this review,we summarize the recent advances of 3D genomics and its biological functions in human and mouse studies,drawing inspiration to explore the 3D genomics of livestock species.We then mainly focus on the biological functions of 3D genome organization in muscle development and its implications in animal breeding. 展开更多
关键词 3D genome organization 3D genomic methodology regulatory mechanisms muscle development livestock breeding
下载PDF
Phylogenetic study on Scenedesmacae with the description of a new genus Coccoidesmus gen.nov.(Chlorophyceae,Chlorophyta)and chloroplast genome analyses
11
作者 Qinghua WANG Ying HOU +2 位作者 Yanhui LI Ying SHI Guoxiang LIU 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第4期1272-1285,共14页
Members of the family Scenedesmaceae are some of the most common algal taxa in inland ecosystems,and they are widely distributed in freshwaters,aerial,and sub-aerial habitats.With the continuous updating of methods,th... Members of the family Scenedesmaceae are some of the most common algal taxa in inland ecosystems,and they are widely distributed in freshwaters,aerial,and sub-aerial habitats.With the continuous updating of methods,the classic morphological taxonomy of this family needs to be revised.In recent years,many genera of Scenedesmaceae have been established via the use of molecular methods.The phylogenetic relationships within Scenedesmaceae were analyzed using different molecular markers and morphological data,and the new freshwater genus Coccoidesmus Wang,Hou et Liu gen.nov.was described.Two new species in this genus were also described.Phylogenetic analysis based on tufA genes revealed that the new genus formed an independent clade closely related to Comasiella.However,these two genera are characterized by significant morphological differences in colony arrangement and cell shape.The chloroplast genome of the type species was assembled and annotated,and analyses of genome structure and sequences were conducted.More genome data could help clarify the phylogenetic relationships within this family. 展开更多
关键词 PHYLOGENETIC Scenedesmaceae Coccoidesmus morphology chloroplast genome
下载PDF
Chromosome-level assembly of triploid genome of Sichuan pepper(Zanthoxylum armatum)
12
作者 Lizhi Song Yue Huang +6 位作者 Hao Zuo Ning Tang Zhengguo Li Wenbiao Jiao Feng Xu Qiang Xu Zexiong Chen 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第2期437-449,共13页
As an important spice species in Rutaceae, the Sichuan pepper (Zanthoxylum armatum) can provide pungent and numbing taste, as well as aroma in its mature fruit. Here we assembled a chromosome-level genome of green pri... As an important spice species in Rutaceae, the Sichuan pepper (Zanthoxylum armatum) can provide pungent and numbing taste, as well as aroma in its mature fruit. Here we assembled a chromosome-level genome of green prickly ash which was widely cultivated in a major production area including Chongqing and Sichuan province, China. We generated 712 Gb (~112×) PacBio long reads and 511 Gb (~82×) Hi-C data, and yielded an assembly of 99 pseudochromosomes with total size of 5.32 Gb and contig N50 of 796 kb. The genomic analyses and cytogenetic experiments both indicated that the cultivarZhuye Huajiao’ was a triploid. We identified a Zanthoxylum-specific whole genome duplication event emerging about 24.8 million years ago (Mya). We also detected a transposition burst event (0.3-0.4 Mya) responsible for the large genome size of Z. armatum. Metabolomic analysis of the Zanthoxylum fruits during development stages revealed profiles of39 volatile aroma compounds and 528 secondary metabolites, from which six types of sanshools were identified. Based on metabolomic and transcriptomic network analysis, we screened candidate genes encoding long chain acyl-CoA synthetase, fatty acid desaturase,branched-chain amino acid aminotransferase involved in sanshool biosynthesis and three genes encoding terpene synthase during fruit development. The multi-omics data provide insights into the evolution of Zanthoxylum and molecular basis of numbing and aroma flavor of Sichuan pepper. 展开更多
关键词 Zanthoxylum armatum genome Sanshool TERPENOID
下载PDF
To Analyze the Sensitivity of RT-PCR Assays Employing S Gene Target Failure with Whole Genome Sequencing Data during Third Wave by SARS-CoV-2 Omicron Variant
13
作者 Pooja Patel Yogita Mistry +1 位作者 Monika Patel Summaiya Mullan 《Advances in Microbiology》 CAS 2024年第5期247-255,共9页
Introduction: Omicron is a highly divergent variant of concern (VOCs) of a severe acute respiratory syndrome SARS-CoV-2. It carries a high number of mutations in its spike protein hence;it is more transmissible in the... Introduction: Omicron is a highly divergent variant of concern (VOCs) of a severe acute respiratory syndrome SARS-CoV-2. It carries a high number of mutations in its spike protein hence;it is more transmissible in the community by immune evasion mechanisms. Due to mutation within S gene, most Omicron variants have reported S gene target failure (SGTF) with some commercially available PCR kits. Such diagnostic features can be used as markers to screen Omicron. However, Whole Genome Sequencing (WGS) is the only gold standard approach to confirm novel microorganisms at genetically level as similar mutations can also be found in other variants that are circulating at low frequencies worldwide. This Retrospective study is aimed to assess RT-PCR sensitivity in the detection of S gene target failure in comparison with whole genome sequencing to detect variants of Omicron. Methods: We have analysed retrospective data of SARS-CoV-2 positive RT-PCR samples for S gene target failure (SGTF) with TaqPath COVID-19 RT-PCR Combo Kit (ThermoFisher) and combined with sequencing technologies to study the emerged pattern of SARS-CoV-2 variants during third wave at the tertiary care centre, Surat. Results: From the first day of December 2021 till the end of February 2022, a total of 321,803 diagnostic RT-PCR tests for SARS-CoV-2 were performed, of which 20,566 positive cases were reported at our tertiary care centre with an average cumulative positivity of 6.39% over a period of three months. In the month of December 21 samples characterized by the SGTF (70/129) were suggestive of being infected by the Omicron variant and identified as Omicron (B.1.1.529 lineage) when sequence. In the month of January, we analysed a subset of samples (n = 618) with SGTF (24%) and without SGTF (76%) with Ct values Conclusions: During the COVID-19 pandemic, it took almost more than 15 days to diagnose infection and identify pathogen by sequencing technology. In contrast to that molecular assay provided quick identification with the help of SGTF phenomenon within 5 hours of duration. This strategy helps scientists and health policymakers for the quick isolation and identification of clusters. That ultimately results in a decreased transmission of pathogen among the community. 展开更多
关键词 SARS-CoV-2 S Gene Target Failure Whole genome Sequencing Omicron
下载PDF
Gene characterization and phylogenetic analysis of four mitochondrial genomes in Caenogastropoda
14
作者 Jiangyong Qu Wanqi Yang +7 位作者 Xindong Teng Li Xu Dachuan Zhang Zhikai Xing Shuang Wang Xiumei Liu Lijun Wang Xumin Wang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第2期137-150,共14页
Caenogastropoda is a highly diverse group,containing~60%of all existing gastropods.Species in this subclass predominantly inhabit marine environments and have a high ecological and economic value.Owing to the increase... Caenogastropoda is a highly diverse group,containing~60%of all existing gastropods.Species in this subclass predominantly inhabit marine environments and have a high ecological and economic value.Owing to the increase in relevant phylogenetic studies,our understanding of between species relatedness in Caenogastropoda has improved.However,the biodiversity,taxonomic status,and phylogenetic relationships of this group remain unclear.In the present study,we performed next-generation sequencing of four complete mitochondrial genomes from three families(Buccinidae,Columbellidae,and Cypraeidae)and the four mitogenomes were classical circular structures,with a length of 16177 bp in Volutharpa ampullacea,16244 bp in Mitrella albuginosa,16926bp in Mauritia arabica asiatica and 15422 bp in Erronea errones.Base composition analysis indicated that whole sequences were biased toward A and T.Then compared them with 171 complete mitochondrial genomes of Caenogastropoda.The phylogenetic relationship of Caenogastropoda derived from Maximum Likelihood(ML)and Bayesian Inference(BI)trees constructed based on CDS sequences was consistent with the results of traditional morphological analysis,with all three families showing close relationships.This study supported Caenogastropoda at the molecular level as a separate clade of Mollusca.According to our divergence time estimations,Caenogastropoda was formed during the middle Triassic period(~247.2–237 Ma).Our novel mitochondrial genomes provide evidence for the speciation of Caenogastropoda in addition to elucidating the mitochondrial genomic evolution of this subclass. 展开更多
关键词 mitochondrial genome phylogenetic analysis CAENOGASTROPODA
下载PDF
Mitochondrial genomes of Tapes dorsatus and Cardita variegata:insights into Heteroconchia phylogeny
15
作者 Xumin WANG Hua ZHANG +6 位作者 Xindong TENG Wenhui SUN Zhikai XING Shuang WANG Xiumei LIU Jiangyong QU Lijun WANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第3期943-959,共17页
Heteroconchia,a widespread and abundant aquatic invertebrate,is an important clade of bivalve mollusks.The relationship between the three branches of Heteroconchia,Palaeoheterodonta,Archiheterodonta,and Euheterodonta ... Heteroconchia,a widespread and abundant aquatic invertebrate,is an important clade of bivalve mollusks.The relationship between the three branches of Heteroconchia,Palaeoheterodonta,Archiheterodonta,and Euheterodonta has become a main controversy in molecular studies of the relationships between bivalves.In the present study,we assembled the complete mitochondrial genomes of Tapes dorsatus(Veneridae)and Cardita variegata(Carditidae)using high-throughput sequencing.C.variegata is the first mitochondrial genome belonging to the family Carditidae to be reported.We used 12 protein coding genes(excluding atp8)from the complete mitochondrial genomes of 146 species to recover the internal relationships of Heteroconchia.Our results support the traditional view of early branching of Palaeoheterodonta and the recovery of the monophyly of Palaeoheterodonta,Anomalodesmata,Imparidentia.Rearrangement analysis show that gene arrangement within Venerida was highly variable.Time-calibrated phylogenetic studies based on a relaxed molecular clock model suggested that Veneridae originated approximately 337.62 million years ago(Ma)and split into two major clades,whereas Carditidae originated approximately 510.09 Ma.Our results provide evidence of the internal relationships of Heteroconchia. 展开更多
关键词 Tapes dorsatus Cardita variegata mitochondrial genome PHYLOGENY
下载PDF
The Clausena lansium genome provides new insights into alkaloid diversity and the evolution of the methyltransferase family
16
作者 Yongzan Wei Yi Wang +9 位作者 Fuchu Hu Wei Wang Changbin Wei Bingqiang Xu Liqin Liu Huayang Li Can Wang Hongna Zhang Zhenchang Liang Jianghui Xie 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第10期3537-3553,共17页
Wampee(Clausena lansium)is an important evergreen fruit tree native to southern China that has a long history of use for medicinal purposes.Here,a chromosome-level genome of C.lansium was constructed with a genome siz... Wampee(Clausena lansium)is an important evergreen fruit tree native to southern China that has a long history of use for medicinal purposes.Here,a chromosome-level genome of C.lansium was constructed with a genome size of 282.9 Mb and scaffold N50 of 30.75 Mb.The assembled genome contains 48.70%repetitive elements and 24,381 protein-coding genes.Comparative genomic analysis showed that C.lansium diverged from Aurantioideae 15.91-24.95 million years ago.Additionally,some expansive and specific gene families related to methyltransferase activity and S-adenosylmethionine-dependent methyltransferase activity were also identified.Further analysis indicated that N-methyltransferase(NMT)is mainly involved in alkaloid biosynthesis and O-methyltransferase(OMT)participates in the regulation of coumarin accumulation in wampee.This suggested that wampee's richness in alkaloids and coumarins might be due to the gene expansions of NMT and OMT.The tandem repeat event was one of the major reasons for the NMT expansion.Hence,the reference genome of C.lansium will facilitate the identification of some useful medicinal compounds from wampee resources and reveal their biosynthetic pathways. 展开更多
关键词 Clausena lansium genome EVOLUTION methyltransferase activity alkaloid biosynthesis coumarin accumulation
下载PDF
Genome sequencing provides insights into Caprifoliaceae genome evolution and the mechanism underlying second blooming phenomenon in Heptacodium miconioides
17
作者 Yueling Li Zhongshuai Sun +1 位作者 Zexin Jin Junmin Li 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第3期897-910,共14页
Plants of the Caprifoliaceae family are widely cultivated worldwide as ornamental plants owing to their numerous,sweet-smelling,beautiful flowers and fruits.Heptacodium miconioides Rehd.,a member of the family,is ende... Plants of the Caprifoliaceae family are widely cultivated worldwide as ornamental plants owing to their numerous,sweet-smelling,beautiful flowers and fruits.Heptacodium miconioides Rehd.,a member of the family,is endemic to eastern China and is cultivated as a popular ornamental plant in North America and European countries.It has a rather novel and beautiful trait of high horticultural value,that is,its sepals persist and enlarge,turning purplish red.Here,we report the chromosome-level genome assembly of H.miconioides to understand its evolution and floral characteristics.The 622.28 Mb assembled genome harbored a shared whole-genome duplication with a related species,Lonicera japonica.Comparative genomic analysis suggested that chromosome fission events following genome duplication underlie the unusual chromosome number of these two species,as well as chromosome fission of another five chromosomes in H.miconioides,giving rise to a haploid chromosome number of 14(versus 9 in L.japonica).In addition,based on transcriptome and chloroplast genome analysis of 17 representative species in the Caprifoliaceae,we assumed that large structural variations in the chromosomes of H.miconioides were not caused by hybridization.Changes in the candidate genes of the MADS-box family were detected in the H.miconioides genome,including AP1-,AP3-,and SEPexpanded,which might underlie the sepal elongation and development in this species.The current findings provided a critical resource for genome evolution studies in Caprifoliaceae and it was an example of how multi-omics data can elucidate the regulation of important ornamental traits. 展开更多
关键词 Heptacodium miconioides genome assembly CAPRIFOLIACEAE Chromosome fusion Sepal traits
下载PDF
Leveraging the potential of big genomic and phenotypic data for genome-wide association mapping in wheat
18
作者 Moritz Lell Yusheng Zhao Jochen C.Reif 《The Crop Journal》 SCIE CSCD 2024年第3期803-813,共11页
Genome-wide association mapping studies(GWAS)based on Big Data are a potential approach to improve marker-assisted selection in plant breeding.The number of available phenotypic and genomic data sets in which medium-s... Genome-wide association mapping studies(GWAS)based on Big Data are a potential approach to improve marker-assisted selection in plant breeding.The number of available phenotypic and genomic data sets in which medium-sized populations of several hundred individuals have been studied is rapidly increasing.Combining these data and using them in GWAS could increase both the power of QTL discovery and the accuracy of estimation of underlying genetic effects,but is hindered by data heterogeneity and lack of interoperability.In this study,we used genomic and phenotypic data sets,focusing on Central European winter wheat populations evaluated for heading date.We explored strategies for integrating these data and subsequently the resulting potential for GWAS.Establishing interoperability between data sets was greatly aided by some overlapping genotypes and a linear relationship between the different phenotyping protocols,resulting in high quality integrated phenotypic data.In this context,genomic prediction proved to be a suitable tool to study relevance of interactions between genotypes and experimental series,which was low in our case.Contrary to expectations,fewer associations between markers and traits were found in the larger combined data than in the individual experimental series.However,the predictive power based on the marker-trait associations of the integrated data set was higher across data sets.Therefore,the results show that the integration of medium-sized to Big Data is an approach to increase the power to detect QTL in GWAS.The results encourage further efforts to standardize and share data in the plant breeding community. 展开更多
关键词 Big Data genome-wide association study Data integration Genomic prediction WHEAT
下载PDF
A simple and efficient CRISPR/Cas9 system permits ultra-multiplex genome editing in plants
19
作者 Suting Wu Htin Kyaw +11 位作者 Zhijun Tong Yirong Yang Zhiwei Wang Liying Zhang Lihua Deng Zhiguo Zhang Bingguang Xiao William Paul Quick Tiegang Lu Guoying Xiao Guannan Qin Xue'an Cui 《The Crop Journal》 SCIE CSCD 2024年第2期569-582,共14页
The development and maturation of the CRISPR/Cas genome editing system provides a valuable tool for plant functional genomics and genetic improvement.Currently available genome-editing tools have a limited number of t... The development and maturation of the CRISPR/Cas genome editing system provides a valuable tool for plant functional genomics and genetic improvement.Currently available genome-editing tools have a limited number of targets,restricting their application in genetic research.In this study,we developed a novel CRISPR/Cas9 plant ultra-multiplex genome editing system consisting of two template vectors,eight donor vectors,four destination vectors,and one primer-design software package.By combining the advantages of Golden Gate cloning to assemble multiple repetitive fragments and Gateway recombination to assemble large fragments and by changing the structure of the amplicons used to assemble sg RNA expression cassettes,the plant ultra-multiplex genome editing system can assemble a single binary vector targeting more than 40 genomic loci.A rice knockout vector containing 49 sg RNA expression cassettes was assembled and a high co-editing efficiency was observed.This plant ultra-multiplex genome editing system advances synthetic biology and plant genetic engineering. 展开更多
关键词 CRISPR/Cas9 Multiplex genome editing Assembly system PLANT
下载PDF
A chromosome-level genome assembly for Chinese plum‘Wushancuili'reveals the molecular basis of its fruit color and susceptibility to rain-cracking
20
作者 Kun Zhou Jingwen Wang +8 位作者 Lin Pan Fang Xiang Yi Zhou Wei Xiong Ming Zeng Donald Grierson Wenbin Kong Lingyu Hu Wanpeng Xi 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第3期672-688,共17页
Chinese plum(Prunus salicina Lindl.)originates from China and makes a large contribution to the global production of plums.The P.salicina‘Wushancuili'has a green coloration and high fruit quality and is economica... Chinese plum(Prunus salicina Lindl.)originates from China and makes a large contribution to the global production of plums.The P.salicina‘Wushancuili'has a green coloration and high fruit quality and is economically important in eliminating poverty and protecting ecology in the Yangtze River Three Gorges Reservoir.However,rain-induced cracking(rain-cracking,literally skin cracking caused by rain)is a limitation to‘Wushancuili'fruit production and causes severe losses.This study reported a high-quality‘Wushancuili'genome assembly consisting of a 302.17-Mb sequence with eight pseudo-chromosomes and a contig N50 of 23.59 Mb through the combination of Illumina sequencing,Pacific Biosciences HiFiⅢsequencing,and high-throughput chromosome conformation capture technology.A total of 25109 protein-coding genes are predicted and 54.17%of the genome is composed of repetitive sequences.‘Wushancuili'underwent a remarkable orthoselection during evolution.Gene identification revealed that loss-of-function in four core MYB10 genes results in the anthocyanin deficiency and absence of red color,revealing the green coloration due to the residual high chlorophyll in fruit skin.Besides,the occurrence of cracking is assumed to be closely associated with cell wall modification and frequently rain-induced pathogen enrichment through transcriptomic analysis.The loss of MYB10 genes might render fruit more susceptible to pathogen-mediated cracking by weakening the epidermal strength and reactive oxygen species(ROS)scavenging.Our findings provided fundamental knowledge regarding fruit coloration and rain-cracking and will facilitate genetic improvement and cultivation management in Chinese plums. 展开更多
关键词 Chinese plum Fruit coloration Fruit epidermis genome MYB10 Rain-cracking
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部