Gentiana macrophylla Pall.(G.macrophylla),whose genus and family belong to the Gentianaceae and Gentiana.The main distribution centers of G.macrophylla resources were the Loess Plateau and the eastern Qinghai-Tibet Pl...Gentiana macrophylla Pall.(G.macrophylla),whose genus and family belong to the Gentianaceae and Gentiana.The main distribution centers of G.macrophylla resources were the Loess Plateau and the eastern Qinghai-Tibet Plateau in China.G.macrophylla,as a traditional medicine,has a long history and was used in different ethnic medicines.Its roots were used in traditional Chinese medicine,which had the effect of anti-inflammatory,anti-rheumatism,antiviral,promote blood circulation,eliminate swelling and pain,while its flowers were used in traditional Mongolian medicine,which had the effect of removing“Xieriwusu”(“Xieriwusu”means rheumatism),antiviral,reducing swelling.From previous studies,it could be found that there were more than forty components isolated and identified from G.macrophylla.The main chemical components were iridoids,flavonoids,triterpenoids,steroids,phenylpropanoids,and alkaloids.Iridoid terpenoid components represented by gentiopicroside and Loganic acid were the main components of the root of G.macrophylla,which had anti-inflammatory,antioxidant,hepatoprotective,analgesic,antibacterial and promote gastrointestinal tract activities.The flower mainly contains isoorientin and isovitexin as the representative of flavonoids.They have anti-tumor,liver protection,heart protection,inhibition of acetylcholinesterase and inhibition of melanin.It could be seen from previous studies that the research on G.macrophylla was mainly focused on the root,and the flower was rarely studied.It was reported that the experimental data of the anti-inflammatory and anti-tumor effects of G.macrophylla flowers show that its curative effect was very good.Therefore,the flowers of the flower of G.macrophylla can be used as potential medicinal parts for research.Given that flavonoids are mostly found in flowers and exhibit a range of functions,it is possible to investigate the flowers in order to learn more about G.macrophylla’s potential medical benefits.Based on botanical books,Chinese classic texts,medical monographs and academic search engines(Google,Google Scholar,Web of Science,SciFinder,Pubmed,CNKI,Sci-hub,Elsevier and Wanfang),the data and information on G.macrophylla in the past 20 years are inquired and summarized comprehensively.The basic source,traditional use,chemical composition,biological activity,pharmacodynamics and quality control of G.macrophylla was systematically reviewed,in order to provide reliable basis for the subsequent development and utilization of G.macrophylla.展开更多
Two new phenolic glycosides, 2,3-dihydroxybenzoic acid methyl ester 3-O-β-o-glucopyranosyl-(1-6)-β-D-glucopyranoside (1) and 2,5-dihydroxylbenzofuran 5-O-β-D-xylopyranosyl-(1-6)-O-β-D-glucopyranoside (2), ...Two new phenolic glycosides, 2,3-dihydroxybenzoic acid methyl ester 3-O-β-o-glucopyranosyl-(1-6)-β-D-glucopyranoside (1) and 2,5-dihydroxylbenzofuran 5-O-β-D-xylopyranosyl-(1-6)-O-β-D-glucopyranoside (2), were isolated as the minor chemical constituents from the roots of Gentiana rigescens, along with 15 known compounds. Their structures were elucidated by detailed spectroscopic analysis, including 1D, 2D NMR and chemical method. All of these compounds were isolated for the first time from the title plant. Moreover, compounds 1 and 2 were tested for the antifungal activities on three plant pathogens Peronophythora litchi, Glomerella cingulata, and Glorosprium musarum.展开更多
Gentiana rigescens Franch. ex Hemsl., a local medicinal plant in Yunnan Province, had very rich resources and was widely distributed in nature in the past. However, the population of G. rigescens is shrinking and the ...Gentiana rigescens Franch. ex Hemsl., a local medicinal plant in Yunnan Province, had very rich resources and was widely distributed in nature in the past. However, the population of G. rigescens is shrinking and the wild plants are rare in Yunnan Province, so it is on the verge of extinction at present. Systemic reproduc-tive technique for G. rigescens is established after many years of efforts and il us-trated in this study.展开更多
Understanding the evolutionary and ecological processes involved in population differentiation and speciation provides critical insights into biodiversity formation. In this study, we employed 29,865 single nucleotide...Understanding the evolutionary and ecological processes involved in population differentiation and speciation provides critical insights into biodiversity formation. In this study, we employed 29,865 single nucleotide polymorphisms(SNPs) and complete plastomes to examine genomic divergence and hybridization in Gentiana aristata, which is endemic to the Qinghai-Tibet Plateau(QTP) region. Genetic clustering revealed that G. aristata is characterized by geographic genetic structures with five clusters(West, East, Central, South and North). The West cluster has a specific morphological character(i.e., blue corolla) and higher values of FSTcompared to the remaining clusters, likely the result of the geological barrier formed by the Yangtze River. The West cluster diverged from the other clusters in the Early Pliocene;these remaining clusters diverged from one another in the Early Quaternary. Phylogenetic reconstructions based on SNPs and plastid data revealed substantial cyto-nuclear conflicts. Genetic clustering and D-statistics demonstrated rampant hybridization between the Central and North clusters,along the Bayankala Mountains, which form the geological barrier between the Central and North clusters. Species distribution modeling demonstrated the range of G. aristata expanded since the Last Interglacial period. Our findings provide genetic and morphological evidence of cryptic diversity in G. aristata, and identified rampant hybridization between genetic clusters along a geological barrier.These findings suggest that geological barriers and climatic fluctuations have an important role in triggering diversification as well as hybridization, indicating that cryptic diversity and hybridization are essential factors in biodiversity formation within the QTP region.展开更多
基金supported by the project for Inner Mongolia Autonomous Region Mongolian medicine standardization(2023-[MB026])the Scientific and Technological Innovative Research Team for Inner Mongolia Medical University of Bioanalysis of Mongolian medicine’s(No.YKD2022TD037)+1 种基金the University Youth Science and Technology Talent Program(No.NJYT23135)the Inner Mongolia Medical University“First-class Discipline”construction project(No.2024MYYLXK006).
文摘Gentiana macrophylla Pall.(G.macrophylla),whose genus and family belong to the Gentianaceae and Gentiana.The main distribution centers of G.macrophylla resources were the Loess Plateau and the eastern Qinghai-Tibet Plateau in China.G.macrophylla,as a traditional medicine,has a long history and was used in different ethnic medicines.Its roots were used in traditional Chinese medicine,which had the effect of anti-inflammatory,anti-rheumatism,antiviral,promote blood circulation,eliminate swelling and pain,while its flowers were used in traditional Mongolian medicine,which had the effect of removing“Xieriwusu”(“Xieriwusu”means rheumatism),antiviral,reducing swelling.From previous studies,it could be found that there were more than forty components isolated and identified from G.macrophylla.The main chemical components were iridoids,flavonoids,triterpenoids,steroids,phenylpropanoids,and alkaloids.Iridoid terpenoid components represented by gentiopicroside and Loganic acid were the main components of the root of G.macrophylla,which had anti-inflammatory,antioxidant,hepatoprotective,analgesic,antibacterial and promote gastrointestinal tract activities.The flower mainly contains isoorientin and isovitexin as the representative of flavonoids.They have anti-tumor,liver protection,heart protection,inhibition of acetylcholinesterase and inhibition of melanin.It could be seen from previous studies that the research on G.macrophylla was mainly focused on the root,and the flower was rarely studied.It was reported that the experimental data of the anti-inflammatory and anti-tumor effects of G.macrophylla flowers show that its curative effect was very good.Therefore,the flowers of the flower of G.macrophylla can be used as potential medicinal parts for research.Given that flavonoids are mostly found in flowers and exhibit a range of functions,it is possible to investigate the flowers in order to learn more about G.macrophylla’s potential medical benefits.Based on botanical books,Chinese classic texts,medical monographs and academic search engines(Google,Google Scholar,Web of Science,SciFinder,Pubmed,CNKI,Sci-hub,Elsevier and Wanfang),the data and information on G.macrophylla in the past 20 years are inquired and summarized comprehensively.The basic source,traditional use,chemical composition,biological activity,pharmacodynamics and quality control of G.macrophylla was systematically reviewed,in order to provide reliable basis for the subsequent development and utilization of G.macrophylla.
文摘Two new phenolic glycosides, 2,3-dihydroxybenzoic acid methyl ester 3-O-β-o-glucopyranosyl-(1-6)-β-D-glucopyranoside (1) and 2,5-dihydroxylbenzofuran 5-O-β-D-xylopyranosyl-(1-6)-O-β-D-glucopyranoside (2), were isolated as the minor chemical constituents from the roots of Gentiana rigescens, along with 15 known compounds. Their structures were elucidated by detailed spectroscopic analysis, including 1D, 2D NMR and chemical method. All of these compounds were isolated for the first time from the title plant. Moreover, compounds 1 and 2 were tested for the antifungal activities on three plant pathogens Peronophythora litchi, Glomerella cingulata, and Glorosprium musarum.
基金Supported by Scientific Research Fund from Department of Education of Yunnan Province(2010C119)~~
文摘Gentiana rigescens Franch. ex Hemsl., a local medicinal plant in Yunnan Province, had very rich resources and was widely distributed in nature in the past. However, the population of G. rigescens is shrinking and the wild plants are rare in Yunnan Province, so it is on the verge of extinction at present. Systemic reproduc-tive technique for G. rigescens is established after many years of efforts and il us-trated in this study.
基金financial support provided by the Foundation of Henan Educational Committee (22A180024)Natural Science Foundation of Henan Province (232300420212)。
文摘Understanding the evolutionary and ecological processes involved in population differentiation and speciation provides critical insights into biodiversity formation. In this study, we employed 29,865 single nucleotide polymorphisms(SNPs) and complete plastomes to examine genomic divergence and hybridization in Gentiana aristata, which is endemic to the Qinghai-Tibet Plateau(QTP) region. Genetic clustering revealed that G. aristata is characterized by geographic genetic structures with five clusters(West, East, Central, South and North). The West cluster has a specific morphological character(i.e., blue corolla) and higher values of FSTcompared to the remaining clusters, likely the result of the geological barrier formed by the Yangtze River. The West cluster diverged from the other clusters in the Early Pliocene;these remaining clusters diverged from one another in the Early Quaternary. Phylogenetic reconstructions based on SNPs and plastid data revealed substantial cyto-nuclear conflicts. Genetic clustering and D-statistics demonstrated rampant hybridization between the Central and North clusters,along the Bayankala Mountains, which form the geological barrier between the Central and North clusters. Species distribution modeling demonstrated the range of G. aristata expanded since the Last Interglacial period. Our findings provide genetic and morphological evidence of cryptic diversity in G. aristata, and identified rampant hybridization between genetic clusters along a geological barrier.These findings suggest that geological barriers and climatic fluctuations have an important role in triggering diversification as well as hybridization, indicating that cryptic diversity and hybridization are essential factors in biodiversity formation within the QTP region.