We investigate the quantum metric and topological Euler number in a cyclically modulated Su-Schrieffer-Heeger(SSH)model with long-range hopping terms.By computing the quantum geometry tensor,we derive exact expression...We investigate the quantum metric and topological Euler number in a cyclically modulated Su-Schrieffer-Heeger(SSH)model with long-range hopping terms.By computing the quantum geometry tensor,we derive exact expressions for the quantum metric and Berry curvature of the energy band electrons,and we obtain the phase diagram of the model marked by the first Chern number.Furthermore,we also obtain the topological Euler number of the energy band based on the Gauss-Bonnet theorem on the topological characterization of the closed Bloch states manifold in the first Brillouin zone.However,some regions where the Berry curvature is identically zero in the first Brillouin zone result in the degeneracy of the quantum metric,which leads to ill-defined non-integer topological Euler numbers.Nevertheless,the non-integer"Euler number"provides valuable insights and an upper bound for the absolute values of the Chern numbers.展开更多
Remotely sensing images are now available for monitoring vegetation dynamics over large areas.In this paper,an improved logistic model that combines double logistic model and global function was developed.Using this m...Remotely sensing images are now available for monitoring vegetation dynamics over large areas.In this paper,an improved logistic model that combines double logistic model and global function was developed.Using this model with SPOT/NDVI data,three key vegetation phenology metrics,the start of growing season (SOS),the end of growing season (EOS) and the length of growing season (LOS),were extracted and mapped in the Changbai Mountains,and the relationship between the key phenology metrics and elevation were established.Results show that average SOS of forest,cropland and grassland in the Changbai Mountains are on the 119th,145th,and 133rd day of year,respectively.The EOS of forest and grassland are similar,with the average on the 280th and 278th,respectively.In comparison,average EOS of the cropland is relatively earlier.The LOS of forest is mainly from the 160th to 180th,that of the grassland extends from the 140th to the 160th,and that of cropland stretches from the 110th to the 130th.As the latitude increases for the same land cover in the study area,the SOS significantly delays and the EOS becomes earlier.The SOS delays approximately three days as the elevation increases 100 m in the areas with elevation higher than 900 m above sea level (a.s.l.).The EOS is slightly earlier as the elevation increases especially in the areas with elevation below 1200 m a.s.l.The LOS shortens approximately four days as the elevation increases 100 m in the areas with elevation higher than 900 m a.s.l.The relationships between vegetation phenology metrics and elevation may be greatly influenced by the land covers.Validation by comparing with the field data and previous research results indicates that the improved logistic model is reliable and effective for extracting vegetation phenology metrics.展开更多
Climatic and atmospheric properties vary significantly within a small area for a topographically diverse region like Nepal.Remote sensing can be used for large-scale monitoring of atmospheric parameters in such divers...Climatic and atmospheric properties vary significantly within a small area for a topographically diverse region like Nepal.Remote sensing can be used for large-scale monitoring of atmospheric parameters in such diverse terrains.This work evaluates the Landsat-based METRIC(Mapping Evapotranspiration at High Resolution with Internalized Calibration)model for estimating Evapotranspiration(ET)in Nepal.The slope and aspect of terrain are accounted for in our implementation,making the model suitable for regions with topographical variations.The estimations obtained from the model were compared with ground-based measurements.The root-meansquare error for hourly ET(daily ET)was 0.06 mm h-1(1.24 mm d-1),while the mean bias error was0.03 mm h-1(0.29 mm d-1).These results are comparable with results from other studies in the literature that have used the METRIC model for different regions of the world.Thus,this work validates the applicability of the METRIC model for ET estimation in a mountainous area like Nepal.Further,this implementation provides ET estimation at a very high resolution of 30 m compared to the best available resolution of 5 km in earlier works,without compromising on the accuracy.ET estimation with high resolution over a large region in Nepal has applications in agricultural planning and monitoring,among others.展开更多
Person re-identification (re-id) on robot platform is an important application for human-robot- interaction (HRI), which aims at making the robot recognize the around persons in varying scenes. Although many effec...Person re-identification (re-id) on robot platform is an important application for human-robot- interaction (HRI), which aims at making the robot recognize the around persons in varying scenes. Although many effective methods have been proposed for surveillance re-id in recent years, re-id on robot platform is still a novel unsolved problem. Most existing methods adapt the supervised metric learning offline to improve the accuracy. However, these methods can not adapt to unknown scenes. To solve this problem, an online re-id framework is proposed. Considering that robotics can afford to use high-resolution RGB-D sensors and clear human face may be captured, face information is used to update the metric model. Firstly, the metric model is pre-trained offline using labeled data. Then during the online stage, we use face information to mine incorrect body matching pairs which are collected to update the metric model online. In addition, to make full use of both appearance and skeleton information provided by RGB-D sensors, a novel feature funnel model (FFM) is proposed. Comparison studies show our approach is more effective and adaptable to varying environments.展开更多
The algorithm of fingerprint constructing for still images based on weighted image structure model is proposed. The error correcting codes that are perfect in weighted Hamming metric are used as a base for fingerprint...The algorithm of fingerprint constructing for still images based on weighted image structure model is proposed. The error correcting codes that are perfect in weighted Hamming metric are used as a base for fingerprint constructing.展开更多
In a competitive digital age where data volumes are increasing with time, the ability to extract meaningful knowledge from high-dimensional data using machine learning (ML) and data mining (DM) techniques and making d...In a competitive digital age where data volumes are increasing with time, the ability to extract meaningful knowledge from high-dimensional data using machine learning (ML) and data mining (DM) techniques and making decisions based on the extracted knowledge is becoming increasingly important in all business domains. Nevertheless, high-dimensional data remains a major challenge for classification algorithms due to its high computational cost and storage requirements. The 2016 Demographic and Health Survey of Ethiopia (EDHS 2016) used as the data source for this study which is publicly available contains several features that may not be relevant to the prediction task. In this paper, we developed a hybrid multidimensional metrics framework for predictive modeling for both model performance evaluation and feature selection to overcome the feature selection challenges and select the best model among the available models in DM and ML. The proposed hybrid metrics were used to measure the efficiency of the predictive models. Experimental results show that the decision tree algorithm is the most efficient model. The higher score of HMM (m, r) = 0.47 illustrates the overall significant model that encompasses almost all the user’s requirements, unlike the classical metrics that use a criterion to select the most appropriate model. On the other hand, the ANNs were found to be the most computationally intensive for our prediction task. Moreover, the type of data and the class size of the dataset (unbalanced data) have a significant impact on the efficiency of the model, especially on the computational cost, and the interpretability of the parameters of the model would be hampered. And the efficiency of the predictive model could be improved with other feature selection algorithms (especially hybrid metrics) considering the experts of the knowledge domain, as the understanding of the business domain has a significant impact.展开更多
Forecasting river flow is crucial for optimal planning,management,and sustainability using freshwater resources.Many machine learning(ML)approaches have been enhanced to improve streamflow prediction.Hybrid techniques...Forecasting river flow is crucial for optimal planning,management,and sustainability using freshwater resources.Many machine learning(ML)approaches have been enhanced to improve streamflow prediction.Hybrid techniques have been viewed as a viable method for enhancing the accuracy of univariate streamflow estimation when compared to standalone approaches.Current researchers have also emphasised using hybrid models to improve forecast accuracy.Accordingly,this paper conducts an updated literature review of applications of hybrid models in estimating streamflow over the last five years,summarising data preprocessing,univariate machine learning modelling strategy,advantages and disadvantages of standalone ML techniques,hybrid models,and performance metrics.This study focuses on two types of hybrid models:parameter optimisation-based hybrid models(OBH)and hybridisation of parameter optimisation-based and preprocessing-based hybridmodels(HOPH).Overall,this research supports the idea thatmeta-heuristic approaches precisely improveML techniques.It’s also one of the first efforts to comprehensively examine the efficiency of various meta-heuristic approaches(classified into four primary classes)hybridised with ML techniques.This study revealed that previous research applied swarm,evolutionary,physics,and hybrid metaheuristics with 77%,61%,12%,and 12%,respectively.Finally,there is still room for improving OBH and HOPH models by examining different data pre-processing techniques and metaheuristic algorithms.展开更多
Background Deep 3D morphable models(deep 3DMMs)play an essential role in computer vision.They are used in facial synthesis,compression,reconstruction and animation,avatar creation,virtual try-on,facial recognition sys...Background Deep 3D morphable models(deep 3DMMs)play an essential role in computer vision.They are used in facial synthesis,compression,reconstruction and animation,avatar creation,virtual try-on,facial recognition systems and medical imaging.These applications require high spatial and perceptual quality of synthesised meshes.Despite their significance,these models have not been compared with different mesh representations and evaluated jointly with point-wise distance and perceptual metrics.Methods We compare the influence of different mesh representation features to various deep 3DMMs on spatial and perceptual fidelity of the reconstructed meshes.This paper proves the hypothesis that building deep 3DMMs from meshes represented with global representations leads to lower spatial reconstruction error measured with L_(1) and L_(2) norm metrics and underperforms on perceptual metrics.In contrast,using differential mesh representations which describe differential surface properties yields lower perceptual FMPD and DAME and higher spatial fidelity error.The influence of mesh feature normalisation and standardisation is also compared and analysed from perceptual and spatial fidelity perspectives.Results The results presented in this paper provide guidance in selecting mesh representations to build deep 3DMMs accordingly to spatial and perceptual quality objectives and propose combinations of mesh representations and deep 3DMMs which improve either perceptual or spatial fidelity of existing methods.展开更多
Large Language Models (LLMs) have revolutionized Generative Artificial Intelligence (GenAI) tasks, becoming an integral part of various applications in society, including text generation, translation, summarization, a...Large Language Models (LLMs) have revolutionized Generative Artificial Intelligence (GenAI) tasks, becoming an integral part of various applications in society, including text generation, translation, summarization, and more. However, their widespread usage emphasizes the critical need to enhance their security posture to ensure the integrity and reliability of their outputs and minimize harmful effects. Prompt injections and training data poisoning attacks are two of the most prominent vulnerabilities in LLMs, which could potentially lead to unpredictable and undesirable behaviors, such as biased outputs, misinformation propagation, and even malicious content generation. The Common Vulnerability Scoring System (CVSS) framework provides a standardized approach to capturing the principal characteristics of vulnerabilities, facilitating a deeper understanding of their severity within the security and AI communities. By extending the current CVSS framework, we generate scores for these vulnerabilities such that organizations can prioritize mitigation efforts, allocate resources effectively, and implement targeted security measures to defend against potential risks.展开更多
A comparative analysis of deep learning models and traditional statistical methods for stock price prediction uses data from the Nigerian stock exchange. Historical data, including daily prices and trading volumes, ar...A comparative analysis of deep learning models and traditional statistical methods for stock price prediction uses data from the Nigerian stock exchange. Historical data, including daily prices and trading volumes, are employed to implement models such as Long Short Term Memory (LSTM) networks, Gated Recurrent Units (GRUs), Autoregressive Integrated Moving Average (ARIMA), and Autoregressive Moving Average (ARMA). These models are assessed over three-time horizons: short-term (1 year), medium-term (2.5 years), and long-term (5 years), with performance measured by Mean Squared Error (MSE) and Mean Absolute Error (MAE). The stability of the time series is tested using the Augmented Dickey-Fuller (ADF) test. Results reveal that deep learning models, particularly LSTM, outperform traditional methods by capturing complex, nonlinear patterns in the data, resulting in more accurate predictions. However, these models require greater computational resources and offer less interpretability than traditional approaches. The findings highlight the potential of deep learning for improving financial forecasting and investment strategies. Future research could incorporate external factors such as social media sentiment and economic indicators, refine model architectures, and explore real-time applications to enhance prediction accuracy and scalability.展开更多
The ionosphere, as the largest and least predictable error source, its behavior cannot be observed at all places simultaneously. The confidence bound, called the grid ionospheric vertical error(GIVE), can only be dete...The ionosphere, as the largest and least predictable error source, its behavior cannot be observed at all places simultaneously. The confidence bound, called the grid ionospheric vertical error(GIVE), can only be determined with the aid of a threat model which is used to restrict the expected ionospheric behavior. However, the spatial threat model at present widespread used, which is based on fit radius and relative centroid metric(RCM), is too conservative or the resulting GIVEs will be too large and will reduce the availability of satellite-based augmentation system(SBAS). In this paper, layered two-dimensional parameters, the vertical direction double RCMs, are introduced based on the spatial variability of the ionosphere. Comparing with the traditional threat model, the experimental results show that the user ionospheric vertical error(UIVE) average reduction rate reaches 16%. And the 95% protection level of conterminous United States(CONUS) is 28%, even under disturbed days, which reaches about 5% reduction rates.The results show that the system service performance has been improved better.展开更多
There is scientific progress in the evaluation methods of recent Earth system models(ESMs).Methods range from single variable to multi-variables,multi-processes,multi-phenomena quantitative evaluations in five layers(...There is scientific progress in the evaluation methods of recent Earth system models(ESMs).Methods range from single variable to multi-variables,multi-processes,multi-phenomena quantitative evaluations in five layers(spheres)of the Earth system,from climatic mean assessment to climate change(such as trends,periodicity,interdecadal variability),extreme values,abnormal characters and quantitative evaluations of phenomena,from qualitative assessment to quantitative calculation of reliability and uncertainty for model simulations.Researchers started considering independence and similarity between models in multi-model use,as well as the quantitative evaluation of climate prediction and projection efect and the quantitative uncertainty contribution analysis.In this manuscript,the simulations and projections by both CMIP5 and CMIP3 that have been published after 2007 are reviewed and summarized.展开更多
Metric measurement of digitized shapes is commonly applied in optical measuring systems.In this letter,three shape-related factors defined by the authors are used in the construction of amultiple linear regression mod...Metric measurement of digitized shapes is commonly applied in optical measuring systems.In this letter,three shape-related factors defined by the authors are used in the construction of amultiple linear regression model which is utilized to compute the circumference of the convex shapes inmillimeter unit.The model is first built upon the relationship hypothesis and then its adequacy ismathematically validated.The results of applying the developed model to the given number of convexshapes in a finite circumferential length range suggest that,in terms of percent error,the model pre-cision is to satisfaction by being within±4%.The test also shows the model’s robustness against theshape’s orientation anisotropy.展开更多
基金Project supported by the Beijing Natural Science Foundation(Grant No.1232026)the Qinxin Talents Program of BISTU(Grant No.QXTCP C201711)+2 种基金the R&D Program of Beijing Municipal Education Commission(Grant No.KM202011232017)the National Natural Science Foundation of China(Grant No.12304190)the Research fund of BISTU(Grant No.2022XJJ32).
文摘We investigate the quantum metric and topological Euler number in a cyclically modulated Su-Schrieffer-Heeger(SSH)model with long-range hopping terms.By computing the quantum geometry tensor,we derive exact expressions for the quantum metric and Berry curvature of the energy band electrons,and we obtain the phase diagram of the model marked by the first Chern number.Furthermore,we also obtain the topological Euler number of the energy band based on the Gauss-Bonnet theorem on the topological characterization of the closed Bloch states manifold in the first Brillouin zone.However,some regions where the Berry curvature is identically zero in the first Brillouin zone result in the degeneracy of the quantum metric,which leads to ill-defined non-integer topological Euler numbers.Nevertheless,the non-integer"Euler number"provides valuable insights and an upper bound for the absolute values of the Chern numbers.
基金Under the auspices of Major State Basic Research Development Program of China (No.2009CB426305)Cultivation Foundation of Science and Technology Innovation Platform of Northeast Normal University (No.106111065202)
文摘Remotely sensing images are now available for monitoring vegetation dynamics over large areas.In this paper,an improved logistic model that combines double logistic model and global function was developed.Using this model with SPOT/NDVI data,three key vegetation phenology metrics,the start of growing season (SOS),the end of growing season (EOS) and the length of growing season (LOS),were extracted and mapped in the Changbai Mountains,and the relationship between the key phenology metrics and elevation were established.Results show that average SOS of forest,cropland and grassland in the Changbai Mountains are on the 119th,145th,and 133rd day of year,respectively.The EOS of forest and grassland are similar,with the average on the 280th and 278th,respectively.In comparison,average EOS of the cropland is relatively earlier.The LOS of forest is mainly from the 160th to 180th,that of the grassland extends from the 140th to the 160th,and that of cropland stretches from the 110th to the 130th.As the latitude increases for the same land cover in the study area,the SOS significantly delays and the EOS becomes earlier.The SOS delays approximately three days as the elevation increases 100 m in the areas with elevation higher than 900 m above sea level (a.s.l.).The EOS is slightly earlier as the elevation increases especially in the areas with elevation below 1200 m a.s.l.The LOS shortens approximately four days as the elevation increases 100 m in the areas with elevation higher than 900 m a.s.l.The relationships between vegetation phenology metrics and elevation may be greatly influenced by the land covers.Validation by comparing with the field data and previous research results indicates that the improved logistic model is reliable and effective for extracting vegetation phenology metrics.
基金funded by the Second Tibetan Plateau Scientific Expedition and Research Program grant number2019QZKK0103the Strategic Priority Research Program of the Chinese Academy of Sciences grant number XDA20060101the National Natural Science Foundation of China grant numbers 41830650,91737205,and 91837208。
文摘Climatic and atmospheric properties vary significantly within a small area for a topographically diverse region like Nepal.Remote sensing can be used for large-scale monitoring of atmospheric parameters in such diverse terrains.This work evaluates the Landsat-based METRIC(Mapping Evapotranspiration at High Resolution with Internalized Calibration)model for estimating Evapotranspiration(ET)in Nepal.The slope and aspect of terrain are accounted for in our implementation,making the model suitable for regions with topographical variations.The estimations obtained from the model were compared with ground-based measurements.The root-meansquare error for hourly ET(daily ET)was 0.06 mm h-1(1.24 mm d-1),while the mean bias error was0.03 mm h-1(0.29 mm d-1).These results are comparable with results from other studies in the literature that have used the METRIC model for different regions of the world.Thus,this work validates the applicability of the METRIC model for ET estimation in a mountainous area like Nepal.Further,this implementation provides ET estimation at a very high resolution of 30 m compared to the best available resolution of 5 km in earlier works,without compromising on the accuracy.ET estimation with high resolution over a large region in Nepal has applications in agricultural planning and monitoring,among others.
基金This work is supported by the National Natural Science Foundation of China (NSFC, nos. 61340046), the National High Technology Research and Development Programme of China (863 Programme, no. 2006AA04Z247), the Scientific and Technical Innovation Commission of Shenzhen Municipality (nos. JCYJ20130331144631730), and the Specialized Research Fund for the Doctoral Programme of Higher Education (SRFDP, no. 20130001110011).
文摘Person re-identification (re-id) on robot platform is an important application for human-robot- interaction (HRI), which aims at making the robot recognize the around persons in varying scenes. Although many effective methods have been proposed for surveillance re-id in recent years, re-id on robot platform is still a novel unsolved problem. Most existing methods adapt the supervised metric learning offline to improve the accuracy. However, these methods can not adapt to unknown scenes. To solve this problem, an online re-id framework is proposed. Considering that robotics can afford to use high-resolution RGB-D sensors and clear human face may be captured, face information is used to update the metric model. Firstly, the metric model is pre-trained offline using labeled data. Then during the online stage, we use face information to mine incorrect body matching pairs which are collected to update the metric model online. In addition, to make full use of both appearance and skeleton information provided by RGB-D sensors, a novel feature funnel model (FFM) is proposed. Comparison studies show our approach is more effective and adaptable to varying environments.
文摘The algorithm of fingerprint constructing for still images based on weighted image structure model is proposed. The error correcting codes that are perfect in weighted Hamming metric are used as a base for fingerprint constructing.
文摘In a competitive digital age where data volumes are increasing with time, the ability to extract meaningful knowledge from high-dimensional data using machine learning (ML) and data mining (DM) techniques and making decisions based on the extracted knowledge is becoming increasingly important in all business domains. Nevertheless, high-dimensional data remains a major challenge for classification algorithms due to its high computational cost and storage requirements. The 2016 Demographic and Health Survey of Ethiopia (EDHS 2016) used as the data source for this study which is publicly available contains several features that may not be relevant to the prediction task. In this paper, we developed a hybrid multidimensional metrics framework for predictive modeling for both model performance evaluation and feature selection to overcome the feature selection challenges and select the best model among the available models in DM and ML. The proposed hybrid metrics were used to measure the efficiency of the predictive models. Experimental results show that the decision tree algorithm is the most efficient model. The higher score of HMM (m, r) = 0.47 illustrates the overall significant model that encompasses almost all the user’s requirements, unlike the classical metrics that use a criterion to select the most appropriate model. On the other hand, the ANNs were found to be the most computationally intensive for our prediction task. Moreover, the type of data and the class size of the dataset (unbalanced data) have a significant impact on the efficiency of the model, especially on the computational cost, and the interpretability of the parameters of the model would be hampered. And the efficiency of the predictive model could be improved with other feature selection algorithms (especially hybrid metrics) considering the experts of the knowledge domain, as the understanding of the business domain has a significant impact.
基金This paper’s logical organisation and content quality have been enhanced,so the authors thank anonymous reviewers and journal editors for assistance.
文摘Forecasting river flow is crucial for optimal planning,management,and sustainability using freshwater resources.Many machine learning(ML)approaches have been enhanced to improve streamflow prediction.Hybrid techniques have been viewed as a viable method for enhancing the accuracy of univariate streamflow estimation when compared to standalone approaches.Current researchers have also emphasised using hybrid models to improve forecast accuracy.Accordingly,this paper conducts an updated literature review of applications of hybrid models in estimating streamflow over the last five years,summarising data preprocessing,univariate machine learning modelling strategy,advantages and disadvantages of standalone ML techniques,hybrid models,and performance metrics.This study focuses on two types of hybrid models:parameter optimisation-based hybrid models(OBH)and hybridisation of parameter optimisation-based and preprocessing-based hybridmodels(HOPH).Overall,this research supports the idea thatmeta-heuristic approaches precisely improveML techniques.It’s also one of the first efforts to comprehensively examine the efficiency of various meta-heuristic approaches(classified into four primary classes)hybridised with ML techniques.This study revealed that previous research applied swarm,evolutionary,physics,and hybrid metaheuristics with 77%,61%,12%,and 12%,respectively.Finally,there is still room for improving OBH and HOPH models by examining different data pre-processing techniques and metaheuristic algorithms.
基金Supported by the Centre for Digital Entertainment at Bournemouth University by the UK Engineering and Physical Sciences Research Council(EPSRC)EP/L016540/1 and Humain Ltd.
文摘Background Deep 3D morphable models(deep 3DMMs)play an essential role in computer vision.They are used in facial synthesis,compression,reconstruction and animation,avatar creation,virtual try-on,facial recognition systems and medical imaging.These applications require high spatial and perceptual quality of synthesised meshes.Despite their significance,these models have not been compared with different mesh representations and evaluated jointly with point-wise distance and perceptual metrics.Methods We compare the influence of different mesh representation features to various deep 3DMMs on spatial and perceptual fidelity of the reconstructed meshes.This paper proves the hypothesis that building deep 3DMMs from meshes represented with global representations leads to lower spatial reconstruction error measured with L_(1) and L_(2) norm metrics and underperforms on perceptual metrics.In contrast,using differential mesh representations which describe differential surface properties yields lower perceptual FMPD and DAME and higher spatial fidelity error.The influence of mesh feature normalisation and standardisation is also compared and analysed from perceptual and spatial fidelity perspectives.Results The results presented in this paper provide guidance in selecting mesh representations to build deep 3DMMs accordingly to spatial and perceptual quality objectives and propose combinations of mesh representations and deep 3DMMs which improve either perceptual or spatial fidelity of existing methods.
文摘Large Language Models (LLMs) have revolutionized Generative Artificial Intelligence (GenAI) tasks, becoming an integral part of various applications in society, including text generation, translation, summarization, and more. However, their widespread usage emphasizes the critical need to enhance their security posture to ensure the integrity and reliability of their outputs and minimize harmful effects. Prompt injections and training data poisoning attacks are two of the most prominent vulnerabilities in LLMs, which could potentially lead to unpredictable and undesirable behaviors, such as biased outputs, misinformation propagation, and even malicious content generation. The Common Vulnerability Scoring System (CVSS) framework provides a standardized approach to capturing the principal characteristics of vulnerabilities, facilitating a deeper understanding of their severity within the security and AI communities. By extending the current CVSS framework, we generate scores for these vulnerabilities such that organizations can prioritize mitigation efforts, allocate resources effectively, and implement targeted security measures to defend against potential risks.
文摘A comparative analysis of deep learning models and traditional statistical methods for stock price prediction uses data from the Nigerian stock exchange. Historical data, including daily prices and trading volumes, are employed to implement models such as Long Short Term Memory (LSTM) networks, Gated Recurrent Units (GRUs), Autoregressive Integrated Moving Average (ARIMA), and Autoregressive Moving Average (ARMA). These models are assessed over three-time horizons: short-term (1 year), medium-term (2.5 years), and long-term (5 years), with performance measured by Mean Squared Error (MSE) and Mean Absolute Error (MAE). The stability of the time series is tested using the Augmented Dickey-Fuller (ADF) test. Results reveal that deep learning models, particularly LSTM, outperform traditional methods by capturing complex, nonlinear patterns in the data, resulting in more accurate predictions. However, these models require greater computational resources and offer less interpretability than traditional approaches. The findings highlight the potential of deep learning for improving financial forecasting and investment strategies. Future research could incorporate external factors such as social media sentiment and economic indicators, refine model architectures, and explore real-time applications to enhance prediction accuracy and scalability.
基金supported by the National Natural Science Foundation of China(41304024)
文摘The ionosphere, as the largest and least predictable error source, its behavior cannot be observed at all places simultaneously. The confidence bound, called the grid ionospheric vertical error(GIVE), can only be determined with the aid of a threat model which is used to restrict the expected ionospheric behavior. However, the spatial threat model at present widespread used, which is based on fit radius and relative centroid metric(RCM), is too conservative or the resulting GIVEs will be too large and will reduce the availability of satellite-based augmentation system(SBAS). In this paper, layered two-dimensional parameters, the vertical direction double RCMs, are introduced based on the spatial variability of the ionosphere. Comparing with the traditional threat model, the experimental results show that the user ionospheric vertical error(UIVE) average reduction rate reaches 16%. And the 95% protection level of conterminous United States(CONUS) is 28%, even under disturbed days, which reaches about 5% reduction rates.The results show that the system service performance has been improved better.
基金supported by the Ministry of Science and Technology 973 Project(No.2010CB950501-03)the National Natural Science Foundation(No.41175066)
文摘There is scientific progress in the evaluation methods of recent Earth system models(ESMs).Methods range from single variable to multi-variables,multi-processes,multi-phenomena quantitative evaluations in five layers(spheres)of the Earth system,from climatic mean assessment to climate change(such as trends,periodicity,interdecadal variability),extreme values,abnormal characters and quantitative evaluations of phenomena,from qualitative assessment to quantitative calculation of reliability and uncertainty for model simulations.Researchers started considering independence and similarity between models in multi-model use,as well as the quantitative evaluation of climate prediction and projection efect and the quantitative uncertainty contribution analysis.In this manuscript,the simulations and projections by both CMIP5 and CMIP3 that have been published after 2007 are reviewed and summarized.
基金the Ningbo Natural Science Foundation(No.2006A610016)the Foundation of National EducationMinistry for Returned Overseas Students&Scholars(SRFfor ROCS,SEM.No.2006699).
文摘Metric measurement of digitized shapes is commonly applied in optical measuring systems.In this letter,three shape-related factors defined by the authors are used in the construction of amultiple linear regression model which is utilized to compute the circumference of the convex shapes inmillimeter unit.The model is first built upon the relationship hypothesis and then its adequacy ismathematically validated.The results of applying the developed model to the given number of convexshapes in a finite circumferential length range suggest that,in terms of percent error,the model pre-cision is to satisfaction by being within±4%.The test also shows the model’s robustness against theshape’s orientation anisotropy.